Lecture 1: Introduction to Operating Systems

Mythili Vutukuru
IIT Bombay
What is an operating system?

• Middleware between user programs and system hardware
• Manages hardware: CPU, main memory, IO devices (disk, network card, mouse, keyboard etc.)
What happens when you run a program? (Background)

- A compiler translates high level programs into an executable (".c" to "a.out")

- The exe contains instructions that the CPU can understand, and data of the program (all numbered with addresses)

- Instructions run on CPU: hardware implements an instruction set architecture (ISA)

- CPU also consists of a few registers, e.g.,
 - Pointer to current instruction (program counter or PC)
 - Operands of instructions, memory addresses
So, what happens when you run a program?

• To run an exe, CPU
 – fetches instruction pointed at by PC from memory
 – loads data required by the instructions into registers
 – decodes and executes the instruction
 – stores results to memory

• Most recently used instructions and data are in CPU caches for faster access
So, what does the OS do?

- OS manages program memory
 - Loads program executable (code, data) from disk to memory
- OS manages CPU
 - Initializes program counter (PC) and other registers to begin execution
- OS manages external devices
 - Read/write files from disk.
OS manages CPU

• OS provides the process abstraction
 – Process: a running program
 – OS creates and manages processes

• Each process has the illusion of having the complete CPU, i.e., OS virtualizes CPU

• Timeshares CPU between processes

• Enables coordination between processes
OS manages memory

- OS manages the memory of the process: code, data, stack, heap etc.
- Each process thinks it has a dedicated memory space for itself, numbers code and data starting from 0 (virtual addresses).
- OS abstracts out the details of the actual placement in memory, translates from virtual addresses to actual physical addresses.
OS manages devices

- OS has code to manage disk, network card, and other external devices: device drivers

- Device driver talks the language of the hardware devices
 - Issues instructions to devices (fetch data from a file)
 - Responds to interrupt events from devices (user has pressed a key on keyboard)

- Persistent data organized as a filesystem on disk
Design goals of an operating system

• Convenience, abstraction of hardware resources for user programs

• Efficiency of usage of CPU, memory, etc.

• Isolation between multiple processes
History of operating systems

• Started out as a library to provide common functionality across programs
• Later, evolved from procedure call to system call: what’s the difference?
• When a system call is made to run OS code, the CPU executes at a higher privilege level
• Evolved from running a single program to multiple processes concurrently