
Lecture 1: Introduction to
Operating Systems

Lecture 1: Introduction to
Operating Systems

Mythili Vutukuru
IIT Bombay



What is an operating system?

• Middleware between
user programs and
system hardware

• Manages hardware:
CPU, main memory, IO
devices (disk, network
card, mouse,
keyboard etc.)

• Middleware between
user programs and
system hardware

• Manages hardware:
CPU, main memory, IO
devices (disk, network
card, mouse,
keyboard etc.)

2



What happens when you run a
program? (Background)

• A compiler translates high level programs into an
executable (“.c” to “a.out”)

• The exe contains instructions that the CPU can
understand, and data of the program (all
numbered with addresses)

• Instructions run on CPU: hardware implements
an instruction set architecture (ISA)

• CPU also consists of a few registers, e.g.,
– Pointer to current instruction (program counter or PC)
– Operands of instructions, memory addresses

• A compiler translates high level programs into an
executable (“.c” to “a.out”)

• The exe contains instructions that the CPU can
understand, and data of the program (all
numbered with addresses)

• Instructions run on CPU: hardware implements
an instruction set architecture (ISA)

• CPU also consists of a few registers, e.g.,
– Pointer to current instruction (program counter or PC)
– Operands of instructions, memory addresses

3



So, what happens when you run a
program?

• To run an exe, CPU
– fetches instruction pointed at

by PC from memory
– loads data required by the

instructions into registers
– decodes and executes the

instruction
– stores results to memory

• Most recently used
instructions and data are in
CPU caches for faster access

• To run an exe, CPU
– fetches instruction pointed at

by PC from memory
– loads data required by the

instructions into registers
– decodes and executes the

instruction
– stores results to memory

• Most recently used
instructions and data are in
CPU caches for faster access

4



So, what does the OS do?
• OS manages program

memory
– Loads program executable

(code, data) from disk to
memory

• OS manages CPU
– Initializes program

counter (PC) and other
registers to begin
execution

• OS manages external
devices
– Read/write files from disk.

• OS manages program
memory
– Loads program executable

(code, data) from disk to
memory

• OS manages CPU
– Initializes program

counter (PC) and other
registers to begin
execution

• OS manages external
devices
– Read/write files from disk.

5



OS manages CPU

• OS provides the process abstraction
– Process: a running program
– OS creates and manages processes

• Each process has the illusion of
having the complete CPU, i.e., OS
virtualizes CPU

• Timeshares CPU between processes
• Enables coordination between

processes

• OS provides the process abstraction
– Process: a running program
– OS creates and manages processes

• Each process has the illusion of
having the complete CPU, i.e., OS
virtualizes CPU

• Timeshares CPU between processes
• Enables coordination between

processes

6



OS manages memory
• OS manages the memory

of the process: code, data,
stack, heap etc

• Each process thinks it has a
dedicated memory space
for itself, numbers code
and data starting from 0
(virtual addresses)

• OS abstracts out the details
of the actual placement in
memory, translates from
virtual addresses to actual
physical addresses

• OS manages the memory
of the process: code, data,
stack, heap etc

• Each process thinks it has a
dedicated memory space
for itself, numbers code
and data starting from 0
(virtual addresses)

• OS abstracts out the details
of the actual placement in
memory, translates from
virtual addresses to actual
physical addresses

7



OS manages devices

• OS has code to manage disk, network card,
and other external devices: device drivers

• Device driver talks the language of the
hardware devices
– Issues instructions to devices (fetch data from a

file)
– Responds to interrupt events from devices (user

has pressed a key on keyboard)
• Persistent data organized as a filesystem on

disk

• OS has code to manage disk, network card,
and other external devices: device drivers

• Device driver talks the language of the
hardware devices
– Issues instructions to devices (fetch data from a

file)
– Responds to interrupt events from devices (user

has pressed a key on keyboard)
• Persistent data organized as a filesystem on

disk
8



Design goals of an operating system

• Convenience, abstraction of hardware
resources for user programs

• Efficiency of usage of CPU, memory, etc.

• Isolation between multiple processes

• Convenience, abstraction of hardware
resources for user programs

• Efficiency of usage of CPU, memory, etc.

• Isolation between multiple processes

9



History of operating systems

• Started out as a library to provide common
functionality across programs

• Later, evolved from procedure call to system
call: what’s the difference?

• When a system call is made to run OS code,
the CPU executes at a higher privilege level

• Evolved from running a single program to
multiple processes concurrently

• Started out as a library to provide common
functionality across programs

• Later, evolved from procedure call to system
call: what’s the difference?

• When a system call is made to run OS code,
the CPU executes at a higher privilege level

• Evolved from running a single program to
multiple processes concurrently

10


