Lecture 10: Demand Paging

Mythili Vutukuru
IIT Bombay

Is main memory always enough?

* Are all pages of all active processes always in
main memory?

— Not necessary, with large address spaces

* OS uses a part of disk (swap space) to store
pages that are not in active use

PFN O PEN 1 PFEN 2 PFN 3

Physical | Proc0 | Proc 1 | Proc 1 | Proc 2
Memory | [VPNO] | [VPN2] | [VPN3] | [VPN O]

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Swap Proc 0 | Proc 0 Proc 1 | Proc 1 (IRl Proc 2 Jg(elef!
Space | [VPN1] | [vPN2] | [Free] | veno) | [vPN 1] IVRION (VPN 11 BVGERD

Page fault

Present bit in page table entry: indicates if a
page of a process resides in memory or not

When translating VA to PA, MMU reads
present bit

If page present in memory, directly accessed

If page not in memory, MMU raises a trap to
the OS — page fault

Page fault handling

Page fault traps OS and moves CPU to kernel
mode

OS fetches disk address of page and issues read
to disk

— OS keeps track of disk address (say, in page table)
OS context switches to another process
— Current process is blocked and cannot run

When disk read completes, OS updates page
table of process, and marks it as ready

When process scheduled again, OS restarts the
instruction that caused page fault

Summary: what happens on memory
dCccess CTUh —7 Cadne

e CPU issues load to a VA for code or data \\/

— Checks CPU cache first MM
— Goes to main memory in case of cache miss \)/
M EM

* MMU looks up TLB for VA

— |f TLB hit, obtains PA, fetches memory location and returns
to CPU (via CPU caches)

— |f TLB miss, MMU accesses memory, walks page table, and
obtains page table entry

* |f present bit set in PTE, accesses memory

* If not present but valid, raises page fault. OS handles
page fault and restarts the CPU load instruction

* |f invalid page access, trap to OS for illegal access

More complications in a page fault

When servicing page fault, what if OS finds that
there is no free page to swap in the faulting page?

OS must swap out an existing page (if it has been
modified, i.e., dirty) and then swap in the faulting
page —too much work!

OS may proactively swap out pages to keep list of

free pages handy —

Which pages to swap out? Decided by page ——

replacement policy.

Page replacement policies

* Optimal: replace page not needed for longest
time in future (not practicall!)

e FIFO: replace page that was brought into
memory earliest (may be a popular page!)

* LRU/LFU: replace the page that was least
recently (or frequently) used in the past

Example: Optimal policy
* Example: 3 frames for 4 pages (0,1,2,3)

e First few accesses are cold (compulsory) misses

Resulting
Adcess | Hit/Miss? Evict Cache State

0. Miss 0
i NV Miss 0,1
27 Miss 01,2
0 Hit .12
Hit .12
3 _Miss 2 b P 9
0 Hit 0.-1.3
3 Hit .13
1 Hit 1.3
2 Miss @ 1.2
Hit a2

Figure 22.1: Tracing The Optimal Policy 8

Example: FIFO

e Usually worse than optimal

e Belady’s anomaly: performance may get
worse when memory size increases!

Resulting
Access Hit/Miss? Evict Cache State
0 Miss First-in— 0
1 Miss First-in— 0,1
i Miss First-in— 0,1, 2
0 Hit First-in— 0,1, 2
1 Hit First-in— ?L,L | Wi
—%3 Miss 0 First-in— 1,2, 3
%0 Miss 1 First-in— 2,3, 0
3 Hit First-in— 2, 3,0
—v 1 Miss &) First-in— 3,0, 1
2 Miss 3 First-in— 0,1, 2
1 Hit First-in— 0,1, 2

-
-

Example: LRU

 Equivalent to optimal in this simple example
* Works well due to locality of references

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
1 Miss LRU— i |
2 Miss LRU— 0,1,2
0 Hit LRU—» 1,2,0
1 Hit LRU— \2,0,17
-— 3 Miss @ LRU— 0,1,3
0 Hit LRU—» 1,30
3 Hit LRU—» 1,03
1 Hit LRU—» 0,3,1
2 Miss 0 LRU— 3,1,2
1 Hit LRU—» 3,2,1

-
-

Figure 22.5: Tracing The LRU Policy

How is LRU implemented?

OS is not involved in every memory access — how
does it know which page is LRU?

Hardware help and some approximations

MMU sets a bit in PTE (”z_iccessge’c_i” bit) when a
page is accessed

OS periodically looks at this bit to estimate pages
that are active and inactive

To replace, OS tries to find a page that does not
have access bit set

— May also look for page with dirty bit not set (to avoid
. . ~
swapping out to disk)

