Lecture 11: Memory Allocation
Algorithms

Mythili Vutukuru
IIT Bombay



Variable sized allocation

e Given a block of memory, how do we allocate it
to satisfy various memory allocation requests?

e This problem must be solved in the C library P

e

— Allocates one or more pages from kernel via
br k/ sbr k or mmap system calls

— Gives out smaller chunks to user programs via malloc

e This problem also occurs in the kernel

— Kernel must allocate memory for its internal data D
structures



Variable sized allocation: headers

 Consider a simple ]_
. . The header used by malloc library
implementation of |
mal | oc =
The 20 bytes returned to caller
* Every allocated
chunk has a }'-igl::;?.h An Allocated Region Plus Header
header withiinfo | ~

npu — \
like size of chunk =— = (=

magic: 1234567

— Why store size? 22 —*

We should know The 20 bytes returned to caller
how much to free
whenfree() is Figure 17.2: Specific Contents Of The Header

called



Free list

head —» virtual address: 16KEB]
. ! size: 4088 ader: size field
* Free space s ext_ 0| header: next fld (NULL s
=

managed as a list

— Pointer to the next
free chunk is

embedded Within ey 5 [virtual address: 16KE]
the free Chunk . 1234567

o The Iibrary traCkS ..o }Themﬂb-,rtesnowatocated
the head of the list R e

— Allocations happen
from the head 522 The free 3980 byte chunk

Figure 17.4: A Heap: After One Allocation

} the rest of the 4KB chunk

Figure 17.3: A Heap With One Free Chunk

\

next: 0




External fragmentation

e Suppose 3 allocations of
size 100 bytes each
happen. Then, the
middle chunk pointed to
by sptr is freed

e Whatis the free list?

— It now has two non-
contiguous elements

* Free space may be
scattered around due to
fragmentation

— Cannot satisfy a request
for 3800 bytes even

though we have the free
space

—V

head —»

—]

v

size: 100

magic: 1234567

next: 16708

A

size: 100

magic: 1234567

size:

[virtual address: 16KB]

} 100 bytes still allocated

(now & chunk of memaory)

} 100-bytes stilllallocated

The free 3764-byte chunk



Splitting and Coalescing

Suppose all the three
chunks are freed

The list now has a bunch
of free chunks that are
adjacent

A smart algorithm would \ =
merge them all into a
bigger free chunk

Must split and coalesce
free chunks to satisfy
variable sized requests

size:

100

next:

16492

next:

[virtual address: 16KE]

(now free)

The free 3764-byte chunk

Figure 17.7: A Non-Coalesced Free List



Buddy allocation for easy coalescing

e Allocate memory in

size of power of 2

I’A

— E.g., for arequest of GHisE

7000 bytes, allocate | !

8KB cunk

32 KB 32 KB
e Why? 2 adjacent

power-of-2 chunks 1 1
can be merged to 16 KB 16 KB

form a bigger power- l
of-2 chunk \

— E.g., if 8KB block and 8 KE >8 e
its “buddy” are free,
they can form a 16KB
chunk




Variable Size Allocation Strategies

ﬂ@LﬂL allocate first free chunk that is sufficient

Best fit: allocate free chunk that is closest in size

Worst fit: allocate free chunk that is farthest in size

Example, consider this free list, and malloc(15)

head —» 10 —» 30 —>» 20 — NULL ﬁ/

Best fit would allocate the 20-byt% chunk

head =—» 10 =—» 30 —» 5 —p NULL

Worst fit would allocate 30-byte chunk: remaining chunk is
bigger and more usable 4

head —» 10 —» 15 —>» 20 —» NULL



Fixed size allocations

Memory allocation algorithms are much simpler
with fixed size allocations

Page-sized fixed allocations in kernel:

— Has free list of pages

— Pointer to next page stored in the free page itself
For some smaller allocations (e.g., PCB), kernel
uses a slab allocator

— Object caches for each type (size) of objects
— Within each cache, only fixed size allocation

— Each cache is made up of one or more “slabs”
Fixed size memory allocators can be used in|use

programs also (instead of generic malloc)

1)




