
Lecture 11: Memory Allocation
Algorithms

Lecture 11: Memory Allocation
Algorithms

Mythili Vutukuru
IIT Bombay

Variable sized allocation

• Given a block of memory, how do we allocate it
to satisfy various memory allocation requests?

• This problem must be solved in the C library
– Allocates one or more pages from kernel via
brk/sbrk or mmap system calls

– Gives out smaller chunks to user programs via malloc

• This problem also occurs in the kernel
– Kernel must allocate memory for its internal data

structures

• Given a block of memory, how do we allocate it
to satisfy various memory allocation requests?

• This problem must be solved in the C library
– Allocates one or more pages from kernel via
brk/sbrk or mmap system calls

– Gives out smaller chunks to user programs via malloc

• This problem also occurs in the kernel
– Kernel must allocate memory for its internal data

structures

2

Variable sized allocation: headers

• Consider a simple
implementation of
malloc

• Every allocated
chunk has a
header with info
like size of chunk
– Why store size?

We should know
how much to free
when free() is
called

• Consider a simple
implementation of
malloc

• Every allocated
chunk has a
header with info
like size of chunk
– Why store size?

We should know
how much to free
when free() is
called

3

Free list

• Free space is
managed as a list
– Pointer to the next

free chunk is
embedded within
the free chunk

• The library tracks
the head of the list
– Allocations happen

from the head

• Free space is
managed as a list
– Pointer to the next

free chunk is
embedded within
the free chunk

• The library tracks
the head of the list
– Allocations happen

from the head

4

External fragmentation
• Suppose 3 allocations of

size 100 bytes each
happen. Then, the
middle chunk pointed to
by sptr is freed

• What is the free list?
– It now has two non-

contiguous elements
• Free space may be

scattered around due to
fragmentation
– Cannot satisfy a request

for 3800 bytes even
though we have the free
space

• Suppose 3 allocations of
size 100 bytes each
happen. Then, the
middle chunk pointed to
by sptr is freed

• What is the free list?
– It now has two non-

contiguous elements
• Free space may be

scattered around due to
fragmentation
– Cannot satisfy a request

for 3800 bytes even
though we have the free
space

5

Splitting and Coalescing

• Suppose all the three
chunks are freed

• The list now has a bunch
of free chunks that are
adjacent

• A smart algorithm would
merge them all into a
bigger free chunk

• Must split and coalesce
free chunks to satisfy
variable sized requests

• Suppose all the three
chunks are freed

• The list now has a bunch
of free chunks that are
adjacent

• A smart algorithm would
merge them all into a
bigger free chunk

• Must split and coalesce
free chunks to satisfy
variable sized requests

6

Buddy allocation for easy coalescing

• Allocate memory in
size of power of 2
– E.g., for a request of

7000 bytes, allocate
8 KB cunk

• Why? 2 adjacent
power-of-2 chunks
can be merged to
form a bigger power-
of-2 chunk
– E.g., if 8KB block and

its “buddy” are free,
they can form a 16KB
chunk

• Allocate memory in
size of power of 2
– E.g., for a request of

7000 bytes, allocate
8 KB cunk

• Why? 2 adjacent
power-of-2 chunks
can be merged to
form a bigger power-
of-2 chunk
– E.g., if 8KB block and

its “buddy” are free,
they can form a 16KB
chunk

7

Variable Size Allocation Strategies
• First fit: allocate first free chunk that is sufficient
• Best fit: allocate free chunk that is closest in size
• Worst fit: allocate free chunk that is farthest in size
• Example, consider this free list, and malloc(15)

• Best fit would allocate the 20-byte chunk

• Worst fit would allocate 30-byte chunk: remaining chunk is
bigger and more usable

• First fit: allocate first free chunk that is sufficient
• Best fit: allocate free chunk that is closest in size
• Worst fit: allocate free chunk that is farthest in size
• Example, consider this free list, and malloc(15)

• Best fit would allocate the 20-byte chunk

• Worst fit would allocate 30-byte chunk: remaining chunk is
bigger and more usable

8

Fixed size allocations
• Memory allocation algorithms are much simpler

with fixed size allocations
• Page-sized fixed allocations in kernel:

– Has free list of pages
– Pointer to next page stored in the free page itself

• For some smaller allocations (e.g., PCB), kernel
uses a slab allocator
– Object caches for each type (size) of objects
– Within each cache, only fixed size allocation
– Each cache is made up of one or more “slabs”

• Fixed size memory allocators can be used in user
programs also (instead of generic malloc)

• Memory allocation algorithms are much simpler
with fixed size allocations

• Page-sized fixed allocations in kernel:
– Has free list of pages
– Pointer to next page stored in the free page itself

• For some smaller allocations (e.g., PCB), kernel
uses a slab allocator
– Object caches for each type (size) of objects
– Within each cache, only fixed size allocation
– Each cache is made up of one or more “slabs”

• Fixed size memory allocators can be used in user
programs also (instead of generic malloc) 9

