Lecture 12: Threads and
Concurrency

Mythili Vutukuru
IIT Bombay

Single threaded process

—_—

* So, far we have studied single i
threaded programs G
e Recap: process execution @
— PC points to current
instruction being run 7/
— SP points to stack frame of
current function call @ |
A program can also have \
multiple threads of execution Stack

e What is a thread? AN

Multi threaded process

* Athread is like another copy
of a process that executes
independently

 Threads shares the same
address space (code, heap)

e Each thread has separate PC

— Each thread may run over
different part of the program

 Each thread has_separate

stack for independent
function calls

= Program Code
—

—

PC1

/

Heap

PC2

B

(free)

Process vs. threads 7 —.C

e Parent P forks a child C Z
— P and C do not share any memory —
— Need complicated IPC mechanisms to communicate o
— Extra copies of code, data in memory o=

e Parent P executes two threads T1 and T2 :\

AR

— T1 and T2 share parts of the address space

— Global variables can be used for communication |
— Smal footprint

 Threads are like separate processes, except they
share the same address space

/

Why threads? ¢ I |
* Parallelism: a single process can effectively utilize
— Understand the difference between concurrency and
parallelism
the same time, even on single CPU core, by @
interleaving their executions
parallel over different CPU cores
e Even if no parallelism, concurrency of threads
threads blocks (e.g., for I/0) \ T2

multiple CPU cores
— Concurrency: running multiple threads/processes at
— Parallelism: running multiple threads/processes in @ @
ensures effective use of CPU when one of the
A\

P
AV

Scheduling threads

OS schedules threads that are ready to run
independently, much like processes

The context of a thread (PC, registers) is saved P
into/restored from thread control block (TCB) AN

KV e
— Every PCB has one or more linked TCBs I‘E B

Threads that are scheduled independently by kernel
are called kernel threads

6\

— E.g., Linux pthreads are kernel threads
In contrast, some libraries provide user-level threads

<~

— User program sees multiple threads g%gg
. . —(-/
— Library multiplexes larger number of user threads over a S N

smaller number of kernel threads .

— _Low overhead of switching between user threads (no
expensive context switch)

— But multiple user threads cannot run in parallel

L= T I = T) B - R o

o e e
e W R e =

15
16
17
18
19
20
21

Creating threads using pthreads API

#include <stdio.h>
$include <assert.h>

#include fEEEEEEE;E? ‘? —F‘ 7,2—

vold smythread(void xarqg) {
printf{"ts\n"; (char *) arg); Z\
return NULL; E§

int
main{int argc, char xargv[]) {
pthread t pl, pZ;

1okt re;

printf ("main: begin\n");

rc = pthread create (&pl, NULL,\mythread)]l; assert (rc == 0);
rc = pthread create (&pZ2, NULL, mythread, "B"); assert(rc == 0);
// join waits for the threads to finish

rc = pthread join(pl, NULL); assert(rc == 0);

rc = pthread join(p2, NULL); assert(rc == 0);

printf ("main: end\n");
return 0;

Figure 26.2: Simple Thread Creation Code (t0.c)

Example: threads with shared data

L= - e B - ¥) B

10
11
12
13
14
15
14

18
149
20
ek |
b

24
25
26

28
29
an
n
a2
a3

35
36
k)
an
a9
40
41
42
43

45

static velatile int counter = 0;

r

// mythread()
I

// Simply adds 1 to counter repeatedly, in a leoop
!/ No, this is not how you would add 10,000,000 to
!/ a counter, but it shows the problem nicely.

i

void =

mythread {void =arg)

{

printf{"%s: begin\n", {(char =} arX);

int 1ij

for (i = 07 1 < 1e7; i++) |
counter = counter + 1;

érirtfi"%s: done\n", (char =z} arg);
return NULL;

2

i
J/ main()
i
{/{ Just launches two threads (pthread creat
// and then waits for them (pthread join)
i
int
main(int argec, char =argv(])
{
pthread t pl, pZ;
printf{"main: begin (counter = %4)\n", counter);

\EEEEEE§=E£EEEE‘&FIF NULL, mythread, "A");

Pthread create (&p2, NULL, mythread, "B");
e Bt =i

// join waits for the threads to finish
Pthread join(pl, NULL};
Pthread join{p2, NULL};
printf("main: done witl
return 0;

f(di\n"™, counter);

AR

T

Threads with shared data: what happens?

e What do we expect? Two threads, each
increments counter by 1077, so 2X1077

prompt> gocc —o main main.c —-Wall —-pthread
prompt> ./main

main: begin (counter = 0)
A: begin~//

E: begin —

A: done~"

B: docne

main: done with both (counter =\2GD&GDGD}

e Sometimes, a lower value. Why?

prompt> ./main

main: begin (counter = 0)

A: begin

B: begin

A: done

B: done

main: done with both (counter = 19345221)

c_\—_’
9

What is happening?

* Assembly code of 7 B 100 TV

108 mow

counter = counter + 1

0S Thread 1 Thread 2

COWNN 7 g fUA

0x8049%9alc, %eax
S0x1, %eax
$eax, 0x8049alc

(after instruction)
PC “eax counter

before critical section
mov 0x8049alc, Yeax

add $0x1, %eax
add $0x1, %eax

interrupt
save T1's state
restore T2's state
mov %eax, 0x8049alc

interrupt
save T2's state

restore T1's state
mov %eax, 0x8049alc

mov 0x8049alc, %eax

100 0 50
105 50 50// 52
108 51 50 —
100
105
108
113

108
113

Figure 26.7: The Problem: Up Close and Personal 0

Race conditions and synchronization

 What just happened is called a race condition
— Concurrent execution can lead to different results

e Critical section: portion of code that can lead to

race conditions —c
* What we need: mutual exclusion @

— Only one thread should be executing critical section at
any time

 What we need: atomicity of the critical section

— The critical section should execute like one
uninterruptible instruction

e How is it achieved? Locks (topic of next lecture)

’_

11

