
Lecture 12: Threads and
Concurrency

Lecture 12: Threads and
Concurrency

Mythili Vutukuru
IIT Bombay

Single threaded process

• So, far we have studied single
threaded programs

• Recap: process execution
– PC points to current

instruction being run
– SP points to stack frame of

current function call
• A program can also have

multiple threads of execution
• What is a thread?

PC

• So, far we have studied single
threaded programs

• Recap: process execution
– PC points to current

instruction being run
– SP points to stack frame of

current function call
• A program can also have

multiple threads of execution
• What is a thread?

2

SP

Multi threaded process

• A thread is like another copy
of a process that executes
independently

• Threads shares the same
address space (code, heap)

• Each thread has separate PC
– Each thread may run over

different part of the program
• Each thread has separate

stack for independent
function calls

PC1

PC2

• A thread is like another copy
of a process that executes
independently

• Threads shares the same
address space (code, heap)

• Each thread has separate PC
– Each thread may run over

different part of the program
• Each thread has separate

stack for independent
function calls

3

SP2

SP1

Process vs. threads
• Parent P forks a child C

– P and C do not share any memory
– Need complicated IPC mechanisms to communicate
– Extra copies of code, data in memory

• Parent P executes two threads T1 and T2
– T1 and T2 share parts of the address space
– Global variables can be used for communication
– Smaller memory footprint

• Threads are like separate processes, except they
share the same address space

• Parent P forks a child C
– P and C do not share any memory
– Need complicated IPC mechanisms to communicate
– Extra copies of code, data in memory

• Parent P executes two threads T1 and T2
– T1 and T2 share parts of the address space
– Global variables can be used for communication
– Smaller memory footprint

• Threads are like separate processes, except they
share the same address space

4

Why threads?
• Parallelism: a single process can effectively utilize

multiple CPU cores
– Understand the difference between concurrency and

parallelism
– Concurrency: running multiple threads/processes at

the same time, even on single CPU core, by
interleaving their executions

– Parallelism: running multiple threads/processes in
parallel over different CPU cores

• Even if no parallelism, concurrency of threads
ensures effective use of CPU when one of the
threads blocks (e.g., for I/O)

• Parallelism: a single process can effectively utilize
multiple CPU cores
– Understand the difference between concurrency and

parallelism
– Concurrency: running multiple threads/processes at

the same time, even on single CPU core, by
interleaving their executions

– Parallelism: running multiple threads/processes in
parallel over different CPU cores

• Even if no parallelism, concurrency of threads
ensures effective use of CPU when one of the
threads blocks (e.g., for I/O)

5

Scheduling threads
• OS schedules threads that are ready to run

independently, much like processes
• The context of a thread (PC, registers) is saved

into/restored from thread control block (TCB)
– Every PCB has one or more linked TCBs

• Threads that are scheduled independently by kernel
are called kernel threads
– E.g., Linux pthreads are kernel threads

• In contrast, some libraries provide user-level threads
– User program sees multiple threads
– Library multiplexes larger number of user threads over a

smaller number of kernel threads
– Low overhead of switching between user threads (no

expensive context switch)
– But multiple user threads cannot run in parallel

• OS schedules threads that are ready to run
independently, much like processes

• The context of a thread (PC, registers) is saved
into/restored from thread control block (TCB)
– Every PCB has one or more linked TCBs

• Threads that are scheduled independently by kernel
are called kernel threads
– E.g., Linux pthreads are kernel threads

• In contrast, some libraries provide user-level threads
– User program sees multiple threads
– Library multiplexes larger number of user threads over a

smaller number of kernel threads
– Low overhead of switching between user threads (no

expensive context switch)
– But multiple user threads cannot run in parallel 6

Creating threads using pthreads API

• A

7

Example: threads with shared data

8

Threads with shared data: what happens?

• What do we expect? Two threads, each
increments counter by 10^7, so 2X10^7

• Sometimes, a lower value. Why?

• What do we expect? Two threads, each
increments counter by 10^7, so 2X10^7

• Sometimes, a lower value. Why?

9

What is happening?
• Assembly code of

counter = counter + 1

10

Race conditions and synchronization
• What just happened is called a race condition

– Concurrent execution can lead to different results
• Critical section: portion of code that can lead to

race conditions
• What we need: mutual exclusion

– Only one thread should be executing critical section at
any time

• What we need: atomicity of the critical section
– The critical section should execute like one

uninterruptible instruction
• How is it achieved? Locks (topic of next lecture)

• What just happened is called a race condition
– Concurrent execution can lead to different results

• Critical section: portion of code that can lead to
race conditions

• What we need: mutual exclusion
– Only one thread should be executing critical section at

any time
• What we need: atomicity of the critical section

– The critical section should execute like one
uninterruptible instruction

• How is it achieved? Locks (topic of next lecture)
11

