Lecture 13: Locks

Mythili Vutukuru
IIT Bombay

Locks: Basic idea

 Consider update of shared variable

balance = balance + 1;

e Wecanusea specialwrij_bl_e to protect it
‘\X\H lock_t mutex; // some globally-allocated lock 'mutex’
R i lock (smutex) ;
\S/ : balance = balance + 1; // CS

unlock (&mutex) ;

e All threads accessing a critical section share a lock
* One threads succeeds in locking — owner of lock

e Other threads that try to lock cannot proceed further
until lock is released by the owner

e Pthreads library in Linux provides such locks

Building a lock

e Goals of a lock implementation j S g
— 2
e

— Mutual exclusion (obviously!)

— Fairness:; all threads should eventually get th
lock, and no thread should starve

— Low overhead: acquiring, releasing, and waiting
for lock should not consume too many resources
 Implementation of locks are needed for both

userspace programs (e.g., pthreads library)
and kernel code

. Implgmenting locks needs support from
hardware and OS
Nal ASAN

Is disabling interrupts enough?

woid leck ()
DisableInterrupts ()

Is this enough?

}
vaoid unlock ()
EnableInterrupts();

P

1
3
No, not always! :
5
6

Many issues here: |

r

— Disabling interrupts is a privileged instruction and

program can misuse it (e.g., run forever)

— Will not work on multiprocessor systems, since
another thread on another core can enter critical
section

This technique is used to implement locks on
single processor systems inside the OS

— Need better solution for other situations

i

A failed lock implementation (1)

e Lock: spin on a flag variable until it is unset,
then set it to acquire lock

 Unlock: unset flag variable

1 typedef struct _ Jock t { int flag; } lock t;
: -

3 vold init (lock t smutex) {

4 // 0 —> lock is available, 1 -> held

5 mutex->flag = 0;

6 r

7

8 void lock{leock t *mutex) {

9 while (mutex->flag = 1) // TEST the flag ”
10 ; // spin-wait (do nothing)

11 ™ mutex->flag = 1; // now SET it!
12

13

14 void unlock (lock t rmutex) {
mutex->flag = 0;

oy
n

[
(=)

Figure 28.1: First Attempt: A Simple Flag

A failed lock implementation (2)

 Thread 1 spins, lock is released, ends spin
e Thread 1 interrupted just before setting flag
* Race condition has moved to the lock
acquisition code!
Thread 1 \/ rﬁéad 2
call lock ()

while (flag == 1)
35\93\// interrupt: switch to Thread 2

call lock ()

while (flag ==1)

flag =1;

interrupt: switch to Thread 1
flag=1; // set tlag to 1 (too!)

Figure 28.2: Trace: No Mutual Exclusion

Solution: Hardware atomic instructions

e Very hard to ensure atomicity only in software

* Modern architectures provide hardware
atomic instructions

* Example of an atomic instruction: test-and-set

— Update a variable and return old value, all in one
hardware instruction

1 11

TestAndSet (int *xold ptr, int new) {
int old = xold ptr; // fetch old value at old ptr

x0ld ptr = new; // store "new’ into old ptr
return old; // return the old wvalue
e —

Simple lock using test-and-set

* If TestAndSet(flag,1) returns 1, it means the lock is held by
someone else, so wait busily

 This lock is called a spinlock — spins until lock is acquired

<
typedef struct _ lock t {
int flag;
} loek E;

vold inikt (lock t #*lock) {
lf 0 indicates that lock is awailable; 1 that it dis held
lock->flag = 0;

} w/é;l
vold lock{lock t =lock) |

while (TestAndSet (&lock->flag, 1) ==
e e e
; // spin-wait (do nothing)

} &

vold unleck(lock b xlock) |
lock—>flag = 02%7

Figure 28.3: A Simple Spin Lock Using Test-and-set

MoooR ~] Oy T oW LD e

Ry
-

—
-2

e]
=

[T T |
=] o~ n

}

8

Spinlock using compare-and-swap

* Another atomic instruction: compare-and-swap

1 int Comparaﬂpdcwam{ nt xptr, int expected, int new) {
2 int actual = wptr*‘_—’d
3 if (actual == expected)
4 *ptr = new; 4¢%
5 return actual;
6 -
Figure 28.4: Compare-and-swap
. : :)) w)c
Spinlock using compare-and-swap =
—/
1 void lock (lock t =xlock) { !
2 while (CompareAndSwap(&lock->flag, 0, 1) == 1)
3 ; // spin Q T
4 } ' \%4 \0(:)‘ N

Alternative to spinning

e Alternative to spinlock: a (sleeping) mutex
d \SIEEpPIng)

* Instead of spinning for a lock, a contending thread
could simply give up the CPU and check back later
— yi el d() movesthread from running to ready state

e

void init () {
flag = 0;

ndSet (&flag, 1) == 1) \
; // give up the CPU

void unlock () {

flag = 0;
s

O G0 ~] O W e W

=
-
[
I
i
]

~— |t

- :J'_;J

[T T
[T = B

iy
[

}

Figure 28.8: Lock With Test-and-set And Yield "

Spinlock vs. sleeping mutex

Most userspace lock implementations are of the
sleeping mutex kind

— CPU wasted by spinning contending threads
— More so if a thread holds spinlock and blocks for long

Locks Ware always spinlocks
— Why? Who will the OS yield to?

When OS acquires a spinlock:

— It must disable interrupts (on that processor core) while
the lock is held. Why? An interrupt handler could request
the same lock, and spin for it forever.

— It must not perform any blocking operation — never go to
sleep with a locked spinlock!—

In general, use spinlocks with care, and release as soon
as possible

How should locks be used?

A lock should be acquired before accessing any
variable or data structure that is shared between
multiple threads of a process

— ”E_read-safe” data structures

All shared kernel data structures must also be
accessed only after locking

Coarse-grained vs. fine-grained locking: one big
lock for all shared data vs. separate locks

— Fine-grained allows more parallelism

— Multiple fine-grained locks may be harder to manage

OS only provides locks, correct locking discipline
is left to the user

