
Lecture 13: Locks

Mythili Vutukuru
IIT Bombay



Locks: Basic idea
• Consider update of shared variable

• We can use a special lock variable to protect it

• All threads accessing a critical section share a lock
• One threads succeeds in locking – owner of lock
• Other threads that try to lock cannot proceed further

until lock is released by the owner
• Pthreads library in Linux provides such locks

• Consider update of shared variable

• We can use a special lock variable to protect it

• All threads accessing a critical section share a lock
• One threads succeeds in locking – owner of lock
• Other threads that try to lock cannot proceed further

until lock is released by the owner
• Pthreads library in Linux provides such locks

2



Building a lock
• Goals of a lock implementation

– Mutual exclusion (obviously!)
– Fairness: all threads should eventually get the

lock, and no thread should starve
– Low overhead: acquiring, releasing, and waiting

for lock should not consume too many resources
• Implementation of locks are needed for both

userspace programs (e.g., pthreads library)
and kernel code

• Implementing locks needs support from
hardware and OS

• Goals of a lock implementation
– Mutual exclusion (obviously!)
– Fairness: all threads should eventually get the

lock, and no thread should starve
– Low overhead: acquiring, releasing, and waiting

for lock should not consume too many resources
• Implementation of locks are needed for both

userspace programs (e.g., pthreads library)
and kernel code

• Implementing locks needs support from
hardware and OS

3



Is disabling interrupts enough?

• Is this enough?
• No, not always!
• Many issues here:

– Disabling interrupts is a privileged instruction and
program can misuse it (e.g., run forever)

– Will not work on multiprocessor systems, since
another thread on another core can enter critical
section

• This technique is used to implement locks on
single processor systems inside the OS
– Need better solution for other situations

• Is this enough?
• No, not always!
• Many issues here:

– Disabling interrupts is a privileged instruction and
program can misuse it (e.g., run forever)

– Will not work on multiprocessor systems, since
another thread on another core can enter critical
section

• This technique is used to implement locks on
single processor systems inside the OS
– Need better solution for other situations

4



A failed lock implementation (1)
• Lock: spin on a flag variable until it is unset,

then set it to acquire lock
• Unlock: unset flag variable

5



A failed lock implementation (2)
• Thread 1 spins, lock is released, ends spin
• Thread 1 interrupted just before setting flag
• Race condition has moved to the lock

acquisition code!

6



Solution: Hardware atomic instructions

• Very hard to ensure atomicity only in software
• Modern architectures provide hardware

atomic instructions
• Example of an atomic instruction: test-and-set

– Update a variable and return old value, all in one
hardware instruction

• Very hard to ensure atomicity only in software
• Modern architectures provide hardware

atomic instructions
• Example of an atomic instruction: test-and-set

– Update a variable and return old value, all in one
hardware instruction

7



Simple lock using test-and-set
• If TestAndSet(flag,1) returns 1, it means the lock is held by

someone else, so wait busily
• This lock is called a spinlock – spins until lock is acquired

8



Spinlock using compare-and-swap

• Another atomic instruction: compare-and-swap

• Spinlock using compare-and-swap

• Another atomic instruction: compare-and-swap

• Spinlock using compare-and-swap

9



Alternative to spinning
• Alternative to spinlock: a (sleeping) mutex
• Instead of spinning for a lock, a contending thread

could simply give up the CPU and check back later
– yield() moves thread from running to ready state

10



Spinlock vs. sleeping mutex
• Most userspace lock implementations are of the

sleeping mutex kind
– CPU wasted by spinning contending threads
– More so if a thread holds spinlock and blocks for long

• Locks inside the OS are always spinlocks
– Why? Who will the OS yield to?

• When OS acquires a spinlock:
– It must disable interrupts (on that processor core) while

the lock is held. Why? An interrupt handler could request
the same lock, and spin for it forever.

– It must not perform any blocking operation – never go to
sleep with a locked spinlock!

• In general, use spinlocks with care, and release as soon
as possible

• Most userspace lock implementations are of the
sleeping mutex kind
– CPU wasted by spinning contending threads
– More so if a thread holds spinlock and blocks for long

• Locks inside the OS are always spinlocks
– Why? Who will the OS yield to?

• When OS acquires a spinlock:
– It must disable interrupts (on that processor core) while

the lock is held. Why? An interrupt handler could request
the same lock, and spin for it forever.

– It must not perform any blocking operation – never go to
sleep with a locked spinlock!

• In general, use spinlocks with care, and release as soon
as possible

11



How should locks be used?
• A lock should be acquired before accessing any

variable or data structure that is shared between
multiple threads of a process
– “Thread-safe” data structures

• All shared kernel data structures must also be
accessed only after locking

• Coarse-grained vs. fine-grained locking: one big
lock for all shared data vs. separate locks
– Fine-grained allows more parallelism
– Multiple fine-grained locks may be harder to manage

• OS only provides locks, correct locking discipline
is left to the user

• A lock should be acquired before accessing any
variable or data structure that is shared between
multiple threads of a process
– “Thread-safe” data structures

• All shared kernel data structures must also be
accessed only after locking

• Coarse-grained vs. fine-grained locking: one big
lock for all shared data vs. separate locks
– Fine-grained allows more parallelism
– Multiple fine-grained locks may be harder to manage

• OS only provides locks, correct locking discipline
is left to the user

12


