
Lecture 14: Condition Variables

Mythili Vutukuru
IIT Bombay



Another type of sychronization

• Locks allow one type of synchronization between
threads – mutual exclusion

• Another common requirement in multi-threaded
applications – waiting and signaling
– E.g., Thread T1 wants to continue only after T2 has

finished some task
• Can accomplish this by busy-waiting on some

variable, but inefficient
• Need a new synchronization primitive: condition

variables

• Locks allow one type of synchronization between
threads – mutual exclusion

• Another common requirement in multi-threaded
applications – waiting and signaling
– E.g., Thread T1 wants to continue only after T2 has

finished some task
• Can accomplish this by busy-waiting on some

variable, but inefficient
• Need a new synchronization primitive: condition

variables

2



Condition Variables

• A condition variable (CV) is a queue that a
thread can put itself into when waiting on
some condition

• Another thread that makes the condition true
can signal the CV to wake up a waiting thread

• Pthreads provides CV for user programs
– OS has a similar functionality of wait/signal for

kernel threads
• Signal wakes up one thread, signal broadcast

wakes up all waiting threads

• A condition variable (CV) is a queue that a
thread can put itself into when waiting on
some condition

• Another thread that makes the condition true
can signal the CV to wake up a waiting thread

• Pthreads provides CV for user programs
– OS has a similar functionality of wait/signal for

kernel threads
• Signal wakes up one thread, signal broadcast

wakes up all waiting threads
3



Example: parent waits for child

4



Why check condition in while loop?
• In the example code, why do we check condition

before calling wait?
– In case the child has already run and done is true, then no

need to wait
• Why check condition with “while” loop and not “if”?

– To avoid corner cases of thread being woken up even when
condition not true (may be an issue with some
implementations)

• In the example code, why do we check condition
before calling wait?
– In case the child has already run and done is true, then no

need to wait
• Why check condition with “while” loop and not “if”?

– To avoid corner cases of thread being woken up even when
condition not true (may be an issue with some
implementations)

5



Why use lock when calling wait?

• Race condition: missed wakeup
– Parent checks done to be 0, decides to sleep, interrupted
– Child runs, sets done to 0, signals, but no one sleeping yet
– Parent now resumes and goes to sleep forever

• Lock must be held when calling wait and signal with CV
• The wait function releases the lock before putting

thread to sleep, so lock is available for signaling thread

What if no lock is held when
calling wait/signal?

• Race condition: missed wakeup
– Parent checks done to be 0, decides to sleep, interrupted
– Child runs, sets done to 0, signals, but no one sleeping yet
– Parent now resumes and goes to sleep forever

• Lock must be held when calling wait and signal with CV
• The wait function releases the lock before putting

thread to sleep, so lock is available for signaling thread
6



Example: Producer/Consumer problem

• A common pattern in multi-threaded
programs

• Example: in a multi-threaded web server, one
thread accepts requests from the network and
puts them in a queue. Worker threads get
requests from this queue and process them.

• Setup: one or more producer threads, one or
more consumer threads, a shared buffer of
bounded size

• A common pattern in multi-threaded
programs

• Example: in a multi-threaded web server, one
thread accepts requests from the network and
puts them in a queue. Worker threads get
requests from this queue and process them.

• Setup: one or more producer threads, one or
more consumer threads, a shared buffer of
bounded size

7



Producer/Consumer with 2 CVs

8


