Lecture 14: Condition Variables

Mythili Vutukuru
IIT Bombay

Another type of sychronization

Locks allow one type of synchronization between
threads — mutual exclusion

Another common requirement in multi-threaded

applications — waiting and signaling i—\ﬁ

— E.g., Thread T1 wants to continue only after T2 hasY ¥
finished some task

Can accomplish this by busy-waiting on some
variable, but inefficient

Need a new synchronization primitive: condition
variables

Condition Variables

A condition variable (CV) is a queue that a
thread can put itself into when waiting on
some condition

Another thread that makes the condition true
can signal the CV to wake up a waiting thread
Pthreads provides CV for user programs

— OS has a similar functionality of wait/signal for
kernel threads

Signal wakes up one thread, signal broadcast
wakes up all waiting threads

Example: parent waits for child

int done = QE.
pthread mutex t m = PTHREAD MUTEX INITIALIZER;4—
pthread_cond;ﬁ_f__f PTHREAD COND_ TNITIALIZEER;

—

Pthread mutex lock (&m);
done = 1;
Pthread_cond_siggiliggL;

Pthread mutex unlock (&m); CD\L(A

1
2
3
4
5 void thr exit () |
6
7
B
9

10 1
11
17 void +child(void +arg) ({

13 printf ("child\n");V

14 thr exit(); 4 ,A’
15 return NULL;

16 }

17

18 void thr join() {
19 Pthread mutex lock (&m);
20 while (done == 0} P
Pthread cond wait(&c, &mj;“
Pthread mutex unlock (&m);

main{int argc, char =argv[]) {
printf ("parent: begin\n");
pthread t p;

Pthread create(&p, NULL, child, NULL);

29 tEr_jDin[};
30 printf ("parent: end\n“};\w//
) | return 0;

Figure 30.3: Parent Waiting For Child: Use A Condition Variable

Why check condition in while loop?

e |nthe example code, why do we check condition
before calling wait?

— In case the child has already run and done is true, then no
need to wait

 Why check condition with “while” loop and not “if”?

— To avoid corner cases of thread being woken up even when

condition not true (may be an issue with some
implementations)

1f (condition)
walt (condvar)

7

//small chance that condition may be false when wait returns

@b;;e4cond1tieﬁf:i>
walt (condwvar)

//condition guaranteed to be true since we check in while-loop

Why use lock when calling wait?

void Ehr exit{) { /QOUV\

done = 1;
Pthread cond signal (&c);

C o
What if no lock is held when : |

calling wait/signal?

void thr join()

Y 7 if {done == 0)
——— '
8 Pthread cond wait (&c);

9 }

e Race condition: missed wakeup
— Parent checks done to be 0, dﬂes to sleep, interrupted
— Child runs, sets done to O, signals, but no one sleeping yet
— Parent now resumes and goes to sleep forever

 Lock must be held when calling wait and signal with CV

 The wait function releases the lock before putting
thread to sleep, so lock is available for signaling thread

Example: Producer/Consumer problem

e A common pattern in multi- threaded{i ii
programs Aya

e Example: in a multi-threaded web server, one
thread accepts requests from the network and
puts them in a queue. Worker threads get
requests from this queue and process them.

e Setup: one or more producer threads, one or
more consumer threads, a shared buffer of
bounded size

Producer/Consumer with 2 CVs

1 cond T %EEEHf Fill;

2 mutex t mutex; ™

3

4 vold xproducer (void =arg)

5 int iy

6 for (i = U; 1 < loops; i++) \ \ \ \ \
7 Pthread mutex lock (&mutex) ;

8 while (count == EEE}

9 Pthread cond wait (&empt &mutex) ;
10 puk (i) ;

11 thread cond _signal (&fill);

12 Pthread mutex unlock (&mutex);

13

14 }

15

16 volid *consumer (void *arg)

17 e 13 & e -

18 for (i = 0; 1 < loops; it+) |

19 Pthread_mgggiziggkigmgLExJ;

20 while (count == 0)

21 Pthread cond wait (&fill, &mytex);
22 int tmp = get (); o

23 Pthread_cond_signal{&empEil;

24 Pthread mutex unlock (&mutex); o
25 printf ("%d\n", tmp);

