
Lecture 16: Concurrency Bugs

Mythili Vutukuru
IIT Bombay



Bugs in concurrent programs

• Writing multi-threaded programs is tricky
• Bugs are non-deterministic and occur based

on execution order of threads – very hard to
debug

• Two types of bugs
– Deadlocks: threads cannot execute any further

and wait for each other
– Non-deadlock bugs: non deadlock but incorrect

results when threads execute

• Writing multi-threaded programs is tricky
• Bugs are non-deterministic and occur based

on execution order of threads – very hard to
debug

• Two types of bugs
– Deadlocks: threads cannot execute any further

and wait for each other
– Non-deadlock bugs: non deadlock but incorrect

results when threads execute

2



Non deadlock bugs

• Atomicity bugs – atomicity assumptions made
by programmer are violated during execution
of concurrent threads
– Fix: locks for mutual exclusion

• Order-violation bugs – desired order of
memory accesses is flipped during concurrent
execution
– Fix: condition variables

• Atomicity bugs – atomicity assumptions made
by programmer are violated during execution
of concurrent threads
– Fix: locks for mutual exclusion

• Order-violation bugs – desired order of
memory accesses is flipped during concurrent
execution
– Fix: condition variables

3



Atomicity bug: example

• One thread reads and prints a shared data item,
while another concurrently modifies it

• Atomicity bugs can occur, not just when writing
to shared data, but even when reading it

• One thread reads and prints a shared data item,
while another concurrently modifies it

• Atomicity bugs can occur, not just when writing
to shared data, but even when reading it

4



Atomicity bug example: fix

• Always use locks when accessing shared data

5



Order violation bug: example

• Thread1 assumes Thread2 has already run

• No assumptions can be made on order of
execution of concurrent threads

• Thread1 assumes Thread2 has already run

• No assumptions can be made on order of
execution of concurrent threads

6



Ordering violation bug example: fix
• Use condition variables or semaphores

7



Deadlock bugs

• Classic example: Thread1 holds lock L1 and is
waiting for lock L2. Thread2 holds L2 and is
waiting for L1.

• Deadlock need not always occur. Only occurs if
executions overlap and context switch from a
thread after acquiring only one lock.

• Classic example: Thread1 holds lock L1 and is
waiting for lock L2. Thread2 holds L2 and is
waiting for L1.

• Deadlock need not always occur. Only occurs if
executions overlap and context switch from a
thread after acquiring only one lock.

8



Deadlock: a visual representation
• Cycle in a dependency graph

9



Conditions for deadlock

• Mutual exclusion: a thread claims exclusive
control of a resource (e.g., lock)

• Hold-and-wait: thread holds a resource and is
waiting for another

• No preemption: thread cannot be made to give
up its resource (e.g., cannot take back a lock)

• Circular wait: there exists a cycle in the resource
dependency graph

• ALL four of the above conditions must hold for a
deadlock to occur

• Mutual exclusion: a thread claims exclusive
control of a resource (e.g., lock)

• Hold-and-wait: thread holds a resource and is
waiting for another

• No preemption: thread cannot be made to give
up its resource (e.g., cannot take back a lock)

• Circular wait: there exists a cycle in the resource
dependency graph

• ALL four of the above conditions must hold for a
deadlock to occur

10



Preventing circular wait

• Acquire locks in a certain fixed order
– E.g., both threads acquire L1 before L2

• Total ordering (or even a partial ordering on
related locks) must be followed
– E.g., order locks by address of lock variable

• Acquire locks in a certain fixed order
– E.g., both threads acquire L1 before L2

• Total ordering (or even a partial ordering on
related locks) must be followed
– E.g., order locks by address of lock variable

11



Preventing hold-and-wait

• Acquire all locks at once, say, by acquiring a
master lock first

• But this method may reduce concurrent
execution and performance gains

• Acquire all locks at once, say, by acquiring a
master lock first

• But this method may reduce concurrent
execution and performance gains

12



Other solutions to deadlocks

• Deadlock avoidance: if OS knew which process
needs which locks, it can schedule the processes
in that deadlock will not occur
– Banker’s algorithm is very popular, but impractical in

real life to assume this knowledge
– Example, below are locks needed by threads and a

possible schedule decided by OS

• Detect and recover: reboot system or kill
deadlocked processes

• Deadlock avoidance: if OS knew which process
needs which locks, it can schedule the processes
in that deadlock will not occur
– Banker’s algorithm is very popular, but impractical in

real life to assume this knowledge
– Example, below are locks needed by threads and a

possible schedule decided by OS

• Detect and recover: reboot system or kill
deadlocked processes 13


