Lecture 16: Concurrency Bugs

Mythili Vutukuru
IIT Bombay

Bugs in concurrent programs

e Writing multi-threaded programs is tricky

* Bugs are non-deterministic and occur based
on execution order of threads — very hard to
debug

 Two types of bugs

— Deadlocks: threads cannot execute any further
and wait for each other

— Non-deadlock bugs: non deadlock but incorrect
C—_—/ -
results when threads execute

Non deadlock bugs

* Atomicity bugs — atomicity assumptions made
by programmer are violated during execution

of concurrent threads ™
=

— Fix: locks for mutual exclusion >
* Order-violation bugs — desired order of
memory accesses is flipped during concurrent

execution 3 S g
— Fix: conditi iables

Atomicity bug: example

 One thread reads and prints a shared data item,
while another concurrently modifies it

R

1

=1 T N k= W R

8
9

L

Thread 1::

if (thd->proc info)
—w

{

fputs(End-—>peage. inf0, ...J3

—

j

Thread 2::
thd->proc_info = NULL;

e Atomicity bugs can occur, not just when writing
to shared data, but even when reading it

Atomicity bug example: fix

Always use locks when accessing shared data

1 pthread mutex t proc_info lock = PTHREAD MUTEX_ INITIALIZER;
2

3 Thread 1::

4 pthread mutex lock (&proc _info lock);

5 if (thd-sproc info) i

&)

7 fpubEs (Ehd-¥peae. infd,«)j

8

9)

10 pthread mutex unlock (&proc info lock);
3 ~FT

12 Thread 2::

13 pthread mutex_lock (&proc_info_lock);
14 thd—>proc info = NULL;

15 pthread mutex unlock (&proc info lock);

Order violation bug: example

e Threadl assumes Thread?2 has already run

1 Thread 1::

2 Vcidgggggi_{

3 I

4 mThread = PR CreateThread (mMain, ...);
5

b

7

g Thraad 213

9 void mMain{...) 1

10

11 mState = mThread->State;

12
13

* No assumptions can be made on order of
execution of concurrent threads

Ordering violation bug example: fix
e Use condition variables or semaphores

PFTHEEAD MUTEX_INITIALIZER;
PTHREEAD COND_INITIALTZEER;

1 pthread mutex t mtLock
o pthread cond t mtCond
3

int mtInit = 0;
4 — —
5 Thread 1::
f void init () {
& IR
8 mThread = PE_CreateThread{mMain, ...)};
9
10 // signal that the thread has been created...
11 thread mutex_lock (&mtLock);
12 mEInit =17
13) pthread cond signal (&mtCond);
14 pthread mutex unlock (&mtLock) ;
15
16 }
17
18 Thread 2::
19 void mMain(...) {
20 i i
21 J/ wait for the thread to be initialized...
22 pthread mutex lock (amtLock) ;
23 while (mbtInit == 0
24 pthread cond wait (éamtCond, &mtlLock);
25 pthread_mﬂtei:EEIEEETgmtLcckj;
26
2% mState = mThread->5tate;
2B

Deadlock bugs

e Classic example: Threadl holds lock L1 and is
waiting for lock L2. Thread2 holds L2 and is
waiting for L1.

Thread 1: hread 2:

pthread mutex lock (L1l); pthread mutex lock (L2);

pthread mutex lock (L2); pthread mutex lock (Ll);
~ ~

* Deadlock need not always occur. Only occurs if
executions overlap and context switch from a
thread after acquiring only one lock.

Deadlock: a visual representation

e Cycle in a dependency graph

Holds
,___—}7 Lock L1
Lock L2 ?
Holds

Figure 32.2: The Deadlock Dependency Graph

Wanted by
g;-] PeIUEM

Conditions for deadlock

IVIutuaI exclusion: a thread claims exclusive
control of a resource (e.g., lock)

Hold-and-wait: thread holds a resource and is
waiting for another

‘No preemption: thread cannot be made to give

up its resource (e.g., cannot take back a lock)

Circular wait: there exists a cycle in the resource
dependency graph

ALL four of the above conditions must hold for a
deadlock to occur

Preventing circular wait

* Acquire locks in a certain fixed order
— E.g., both threads acquire L1 before L2

* Total ordering (or even a partial ordering on

related locks) must be followed
— E.g., order locks by address of lock variable

—_—

if (ml > m2) { // grab locks in high-to-low address order
pthread mutex lock(ml); -
pthread mutex_lock (m2);
} else |
pthread mutex lock (m2);
pthread mutex lock (ml);

// Code assumes that ml != m2 (it is not the same lock)

11

Preventing hold-and-wait

* Acquire all locks at once, say, by acquiring a
master lock first

e But this method may reduce concurrent
execution and performance gains

pthread mutex lock (prevention);

pthread mutex lock (L1l});
pthread mutex_lock (L2);

// begin lock acquistion

N o= W ka3 =

thread mutex unlock (prevention); // end
o (I I

12

Other solutions to deadlocks

 Deadlock avoidance: if OS knew which process
needs which locks, it can schedule the processes
in that deadlock will not occur

— Banker’s algorithm is very popular, but impractical in
real life to assume this knowledge

— Example, below are locks needed by threads and a
possible schedule decided by OS

T1 T2 T3 T4 CPU 1 T4
iLE rfes yes no no
L2 /es yes yes no CPU 2 %i

e Detect and recover: reboot system or Kkill
deadlocked processes

