
Lecture 17: Communication with
I/O Devices

Lecture 17: Communication with
I/O Devices

Mythili Vutukuru
IIT Bombay



Input/Output Devices

• I/O devices
connect to the CPU
and memory via a
bus
– High speed bus,

e.g., PCI
– Other: SCSI, USB,

SATA

• Point of connection
to the system: port

• I/O devices
connect to the CPU
and memory via a
bus
– High speed bus,

e.g., PCI
– Other: SCSI, USB,

SATA

• Point of connection
to the system: port

2



Simple Device Model
• Block devices store a set of numbered blocks (disks)
• Character devices produce/consume stream of bytes

(keyboard)
• Devices expose an interface of memory registers

– Current status of device
– Command to execute
– Data to transfer

• The internals of device are usually hidden

• Block devices store a set of numbered blocks (disks)
• Character devices produce/consume stream of bytes

(keyboard)
• Devices expose an interface of memory registers

– Current status of device
– Command to execute
– Data to transfer

• The internals of device are usually hidden

3



How does OS read/write to registers?

• How does OS read/write to registers like status
and command?

• Explicit I/O instructions
– E.g., on x86, in and out instructions can be used to

read and write to specific registers on a device
– Privileged instructions accessed by OS

• Memory mapped I/O
– Device makes registers appear like memory locations
– OS simply reads and writes from memory
– Memory hardware routes accesses to these special

memory addresses to devices

• How does OS read/write to registers like status
and command?

• Explicit I/O instructions
– E.g., on x86, in and out instructions can be used to

read and write to specific registers on a device
– Privileged instructions accessed by OS

• Memory mapped I/O
– Device makes registers appear like memory locations
– OS simply reads and writes from memory
– Memory hardware routes accesses to these special

memory addresses to devices

4



A simple execution of I/O requests

• Polling status to see if device ready – wastes
CPU cycles

• Programmed I/O – CPU explicitly copies data
to/from device

5



Interrupts
• Polling wastes CPU cycles

• Instead, OS can put process to sleep and
switch to another process

• When I/O request completes, device raises
interrupt

• Polling wastes CPU cycles

• Instead, OS can put process to sleep and
switch to another process

• When I/O request completes, device raises
interrupt

6



Interrupt handler
• Interrupt switches process to kernel mode
• Interrupt Descriptor Table (IDT) stores pointers to

interrupt handlers (interrupt service routines)
– Interrupt (IRQ) number identifies the interrupt

handler to run for a device
• Interrupt handler acts upon device notification,

unblocks the process waiting for I/O (if any), and
starts next I/O request (if any pending)

• Handling interrupts imposes kernel mode
transition overheads
– Note: polling may be faster than interrupts if device is

fast

• Interrupt switches process to kernel mode
• Interrupt Descriptor Table (IDT) stores pointers to

interrupt handlers (interrupt service routines)
– Interrupt (IRQ) number identifies the interrupt

handler to run for a device
• Interrupt handler acts upon device notification,

unblocks the process waiting for I/O (if any), and
starts next I/O request (if any pending)

• Handling interrupts imposes kernel mode
transition overheads
– Note: polling may be faster than interrupts if device is

fast
7



Direct Memory Access (DMA)
• CPU cycles wasted in copying data to/from device

• Instead, a special piece of hardware (DMA engine)
copies from main memory to device
– CPU gives DMA engine the memory location of data
– In case of read, interrupt raised after DMA completes
– In case of write, disk starts writing after DMA completes

• CPU cycles wasted in copying data to/from device

• Instead, a special piece of hardware (DMA engine)
copies from main memory to device
– CPU gives DMA engine the memory location of data
– In case of read, interrupt raised after DMA completes
– In case of write, disk starts writing after DMA completes

8



Device Driver
• Device driver: part of OS code that talks to

specific device, gives commands, handles
interrupts etc.

• Most OS code abstracts the device details
– E.g., file system code is written on top of a generic

block interface

• Device driver: part of OS code that talks to
specific device, gives commands, handles
interrupts etc.

• Most OS code abstracts the device details
– E.g., file system code is written on top of a generic

block interface

9


