Lecture 17: Communication with
/O Devices

Mythili Vutukuru
IIT Bombay

Input/Output Devices

e |/O devices
connect to the CPU

and memory via a I I
Memory Bus

bus ~(proprietary)

— High speed bus,
General /O Bus
e.g., PCI I (e.g., PCI)
— Other: SCSI, USB,
SATA

e Point of connection > Poripheral VO Bus

<
to the system: port g é @ g (26, 551 SATA, US8

CPU Memory

Graphics

Simple Device Model

(keyboard)

Block devices store a set of numbered blocks (disks)
Character devices produce/consume stream of bytes

Devices expose an interface of memory registers

— Current status of device

— Command to execute

— Data to transfer
The internals of device are usually hidden

Registers Status Command Data

Interface

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Figure 36.2: A Canonical Device

Internals

How does OS read/write to registers?

e How does OS read/write to registers like status
and command?

e Explicit I/O instructions

— E.g., on x86, 1 N and out instructions can be used to
read and write to specific registers on a device

— Privileged instructions accessed by OS
e Memory mapped I/O)
— Device makes registers appear like memory locations

— OS simply reads and writes from memory
— Memory hardware routes accesses to these special

memory addresses to devices o \Tﬂ
5

)=

A simple execution of 1/0O requests

—=> While (STATUS == BUSY)
; // wait until device is not busy
Write data to DATA register
%> Write command to COMMAND register
(Doing so starts the device and executes the command)
5 While (STATUS == BUSY)
; // wait until device is done with your request

e Polling status to see if device ready — wastes
CPU cycles

e Programmed I/O — CPU explicitly copies data
to/from device

Interrupts

e Polling wastes CPU cycles

CPU i I I -) [o 1|1 1 1| 1

Disk k o[MR Y

e Instead, OS can put process to sleep and

switch to anothe%

CPU1111{111111

Disk l 1|1 |4 | 1 1’5-\(\%
Yy “— . .
e When I/O request completes, device raises

interrupt

Interrupt handler

Interrupt switches process to kernel mode

Interrupt Descriptor Table (IDT) stores pointers to
interrupt handlers (interrupt service routines)

— Interrupt (IRQ) number identifies the interrupt
handler to run for a device

Interrupt handler acts upon device notification,

unblocks the process waiting for 1/0 (if any), and

starts next |/O request (if any pending)

Handling interrupts imposes kernel mode
transition overheads

— Note: polling may be faster than interrupts if device is
fast

Direct Memory Access (DMA)

e CPU cycles wasted in copying data tgﬁrom device

K_A/—\\
CPU 1 1 1 (11 B /G 2 2 2 2 2 &BEE
Disk e N1 [1]
* Instead, a special piece/of hardware (DMA engine)
copies from main memory to device S

CPU I I e S (R

DMA X“ccc

Disk \43 B

Device Driver

. DeV|ce driver: part of OS code that talks to
speC|f|c device, gives commands, handles
interrupts etc.

 Most OS code abstracts the device details

— E.g., file system code is written on top of a generic
block interface

. POSIX API [open, read,_write, close, etc.] -

File System

Generic Block Interface [block read/write

Specific Block Interface [protocol-specific read/write]
Device Driver [SCSI, ATA, etc]

