
Lecture 18: Files and Directories

Mythili Vutukuru
IIT Bombay



The file abstraction

• File – linear array of bytes, stored persistently
– Identified with file name (human readable) and a

OS-level identifier (“inode number”)
– Inode number unique within a file system

• Directory contains other subdirectories and
files, along with their inode numbers
– Stored like a file, whose contents are filename-to-

inode mappings

• File – linear array of bytes, stored persistently
– Identified with file name (human readable) and a

OS-level identifier (“inode number”)
– Inode number unique within a file system

• Directory contains other subdirectories and
files, along with their inode numbers
– Stored like a file, whose contents are filename-to-

inode mappings

2



Directory tree

• Files and directories arranged in a tree,
starting with root (“/”)

3



Operations on files (1)
• Creating a file

– open() system call with flag to create
– Returns a number called “file descriptor”

• Opening a file
– Existing files must be opened before they can be

read/written
– Also uses open system call, and returns fd

• All other operations on files use the file
descriptor

• close() system call closes the file

• Creating a file
– open() system call with flag to create
– Returns a number called “file descriptor”

• Opening a file
– Existing files must be opened before they can be

read/written
– Also uses open system call, and returns fd

• All other operations on files use the file
descriptor

• close() system call closes the file
4



Operations on files (2)

• Reading/writing files: read()/write() system calls
– Arguments: file descriptor, buffer with data, size

• Reading and writing happens sequentially by default
– Successive read/write calls fetch from current offset

• What if you want to read/write at random location
– lseek() system call lets you seek to random offset

• Writes are buffered in memory temporarily, so
fsync() system call flushes all writes to disk

• Other operations: rename file, delete (unlink) file, get
statistics of a file

• Reading/writing files: read()/write() system calls
– Arguments: file descriptor, buffer with data, size

• Reading and writing happens sequentially by default
– Successive read/write calls fetch from current offset

• What if you want to read/write at random location
– lseek() system call lets you seek to random offset

• Writes are buffered in memory temporarily, so
fsync() system call flushes all writes to disk

• Other operations: rename file, delete (unlink) file, get
statistics of a file

5



Operations on directories
• Directories can also be accessed like files

– Operations like create, open, read, close
• For example, the “ls” program opens and

reads all directory entries
– Directory entry contains file name, inode number,

type of file (file/directory) etc.

• Directories can also be accessed like files
– Operations like create, open, read, close

• For example, the “ls” program opens and
reads all directory entries
– Directory entry contains file name, inode number,

type of file (file/directory) etc.

6



Hard links
• Hard linking creates another

file that points to the same
inode number (and hence,
same underlying data)

• If one file deleted, file data can
be accessed through the other
links

• Inode maintains a link count,
file data deleted only when no
further links to it

• You can only unlink, OS decides
when to delete

• Hard linking creates another
file that points to the same
inode number (and hence,
same underlying data)

• If one file deleted, file data can
be accessed through the other
links

• Inode maintains a link count,
file data deleted only when no
further links to it

• You can only unlink, OS decides
when to delete

7



Soft links or symbolic links
• Soft link is a file that simply stores a pointer to

another filename

• If the main file is deleted, then the link points
to an invalid entry: dangling reference

• Soft link is a file that simply stores a pointer to
another filename

• If the main file is deleted, then the link points
to an invalid entry: dangling reference

8



Mounting a filesystem

• Mounting a filesystem connects the files to a specific
point in the directory tree

• Several devices and file systems are mounted on a
typical machine, accessed with mount command

• Mounting a filesystem connects the files to a specific
point in the directory tree

• Several devices and file systems are mounted on a
typical machine, accessed with mount command

9



Memory mapping a file

• Alternate way of accessing a file, instead of using
file descriptors and read/write syscalls

• mmap() allocates a page in the virtual address
space of a process
– “Anonymous” page: used to store program data
– File-backed page: contains data of file (filename

provided as arg to mmap)

• When file is mmaped, file data copied into one or
more pages in memory, can be accessed like any
other memory location in program

• Alternate way of accessing a file, instead of using
file descriptors and read/write syscalls

• mmap() allocates a page in the virtual address
space of a process
– “Anonymous” page: used to store program data
– File-backed page: contains data of file (filename

provided as arg to mmap)

• When file is mmaped, file data copied into one or
more pages in memory, can be accessed like any
other memory location in program

10


