Lecture 19: File System
Implementation

Mythili Vutukuru
IIT Bombay

File System

* An organization of files and directories on disk
 OS has one or more file systems

e Two main aspects of file systems
— Data structures to organize data and metadata on disk

— Implementation of system calls like open, read, write
using the data structures

* Disks expose a set of blocks (usually 512 bytes)

* File system organizes files onto blocks
— System calls translated into reads and writes on blocks

Example: a simple file system

®::
D

D

D

D

D

D

D D

D

D

D

D

D

D

D| DIDID

D

D

D

f 8

15 16

Data Region

DID[DIDID| D

D

D

D

D

D

D| D

D

D

D

D

D

D| [DIDID

D

D

D

32 39 40

47 48

e Data blocks: file data stored in one or more blocks

e Metadata about every file stored in inode
— Location of data blocks of a file, permissions etc.

* |Inode blocks: each block has one or more inodes
itmaps: indicate which inodes/data b

uperblock: holds master plan of all ot
(which are inodes, which are data bloc

ocks are free

her blocks
s etc.)

Inode table

e Usually, inodes (index nodes) stored in array

— Inode number of a file is index into this array
The Inode Table (Closeup)

| i . ' iblock 0 | iblock 1 | iblock 2 | iblock 3 | iblock 4

OKB 4KB 8KB 12KB 16KB 20KB

e What does inode store?

— File ta: permissions, access time, etc.

— Pointers (disk block numbers) of file data

3 [16]17]18]19(32]33|34]3548]49(|50|51|64|65 |66 |67

7 |20|21|22|23|36|37|38|39|52|53 |54 55|68 (69|70 71

11]24]25(26 |27 [4d[41\ 4243 |56 |57 [58]59] 7273|7475

15|28 |29|30|31|44745]46(47 |60|61|62|63| 76|77 |78|79
24KB 28KB

32KB

Inode structure

* File data not stored contiguously on
to track multiple block numbers of a file

e How does inode track disk block numbers?

— Direct pointers: numbers of first few blocks are
stored in inode itself (suffices for small files)

— Indirect block: for larger files, inode stores number
of indirect block, which has block numbers of file
data

— Similarly, double and triple indirect bIoc s (multi-

level index) @?
L %@:

File Allocation Table (FAT)

e Alternate way to track file blocks

e FAT stores next block pointer for each block
— FAT has one entry per disk block

— Entry has number of next file block, or null (if last

block) \B

— Pointer to first block s’Eored in inode

0 &

> V)

Directory structure V)
R
* Directory stores records mapping filename to

inode number as shown below

inum reclen | strlen | name
5 12 2 .
2 12 3
12 12 4 foo
13 12 ji: 8 bar
24 3/6_ 28 foobar is a pretty_ longname

* Linked list of records, or more complex
structures (hash tables, binary search trees
etc.)

* Directory is a special type of file and has inode
and data blocks (which store the file records) 7

Free space management

|
* How to track free blocks? o \S,Z\\ |

‘l
———

— Bitmaps, for inodes and data blocks, store one bit
per block to indicate if free or not

— Free list, super block stores pointer to first free
block, a free block stores address of next block on
list

— More complex structures can also be used

S

Opening a fileﬂ@?@
Lo

 Why open? To have the inode readily available (in
memory) for future operations on file

— Open returns fd which points to in-memory inode
— Reads and writes can access file data from inode

e What happens during open? l@ /b c pxk
— The pathname of the file is traversed, starting at root
— Inode of root is known, to bootstrap the traversal
— Recursively do: fetch ino_dwft directory, read
its data blocks, get inode number of child, fetch inode
of child. Repeat until end of path

— If new file, new inode and data blocks will have to be
allocated using bitmap, and d Wy updated

Open file table

* Global open file table
— One entry for every file opened (even sockets, pipes)

— Entry points to in-memory copy of inode (other data
structures for sockets and pipes)

* Per-process open file table -,
— Array of files opened by a process
— File descriptor number is index into this array

— Per-process table entry points to global open file table
entry

— Every process has three files (standard in/out/err)
open by default (fd 0, 1, 2)

buuv, 4L,)
* Open system call creates entries in both tables

and returns fd number

10

Reading and writing a file

e For reading/writing file

— Access in-memory inode via file descriptor

— Find location of data block at current read/write
offset

— Fetch block from disk and perform operation

— Writes may need to allocate new blocks from disk
using bitmap of free blocks

— Update time of access and other metadata in
inode

Virtual File System G

o

structures (e.g., organization of file records in
directory)

Linux supports virtual file system (VFS) abstraction F5

VFS looks at a file system as objects (files, directories,)
inodes, superblock) and operations on these objects
(e.g., lookup filename in directory)

System call logic is written on VFS objects

To develop a new file system, simply implement
functions on VFS objects and provide pointers to these
functions to kernel

Syscall implementation does not have to change with
file system implementation details

File systems differ in implementations of data \/ \: S

SO
: OO
Disk buffer cache (1) D0
e Results of recently fetched disk blocks are cached
— LRU to evict if cache is full
e File system issues block read/write requests to
block numbers via buffer cache
— If block in cache, served from cache, no disk I/0
— If cache miss, block fetched to cache and returned to

—3

file system
 Writes are applied to cache block first
— Synchronous/wWache writes to disk
immediately

— Asynchronous/write-back cache stores dirty block in @
memory and writes back after a delay

Disk buffer cache (2)
e Unified page cache in OS

— Free pages allocated to both processes and disk
buffer cache from common pool

e Two benefits

— Improved performance due to reduced disk I/0
(one disk access for multiple reads and writes)

— Single copy of block in memory (no inconsistency
dCross processes)
e Some applications like databases may avoid

caching altogether, to avoid inconsistencies
due to crashes: direct |/O

