
Lecture 2: The Process
Abstraction

Lecture 2: The Process
Abstraction

Mythili Vutukuru
IIT Bombay



OS provides process abstraction

• When you run an exe file, the OS creates a
process = a running program

• OS timeshares CPU across multiple processes:
virtualizes CPU

• OS has a CPU scheduler that picks one of the
many active processes to execute on a CPU
– Policy: which process to run
– Mechanism: how to “context switch” between

processes

• When you run an exe file, the OS creates a
process = a running program

• OS timeshares CPU across multiple processes:
virtualizes CPU

• OS has a CPU scheduler that picks one of the
many active processes to execute on a CPU
– Policy: which process to run
– Mechanism: how to “context switch” between

processes
2



What constitutes a process?
• A unique identifier (PID)
• Memory image

– Code & data (static)
– Stack and heap (dynamic)

• CPU context: registers
– Program counter
– Current operands
– Stack pointer

• File descriptors
– Pointers to open files and

devices

• A unique identifier (PID)
• Memory image

– Code & data (static)
– Stack and heap (dynamic)

• CPU context: registers
– Program counter
– Current operands
– Stack pointer

• File descriptors
– Pointers to open files and

devices

3



How does OS create a process?
• Allocates memory

and creates memory
image
– Loads code, data

from disk exe
– Creates runtime

stack, heap
• Opens basic files

– STD IN, OUT, ERR
• Initializes CPU

registers
– PC points to first

instruction

• Allocates memory
and creates memory
image
– Loads code, data

from disk exe
– Creates runtime

stack, heap
• Opens basic files

– STD IN, OUT, ERR
• Initializes CPU

registers
– PC points to first

instruction

4



States of a process

• Running: currently executing on CPU
• Ready: waiting to be scheduled
• Blocked: suspended, not ready to run

– Why? Waiting for some event, e.g., process issues
a read from disk

– When is it unblocked? Disk issues an interrupt
when data is ready

• New: being created, yet to run
• Dead: terminated

• Running: currently executing on CPU
• Ready: waiting to be scheduled
• Blocked: suspended, not ready to run

– Why? Waiting for some event, e.g., process issues
a read from disk

– When is it unblocked? Disk issues an interrupt
when data is ready

• New: being created, yet to run
• Dead: terminated

5



Process State Transitions

6



Example: Process States

7



OS data structures
• OS maintains a data structure (e.g., list) of all

active processes
• Information about each process is stored in a

process control block (PCB)
– Process identifier
– Process state
– Pointers to other related processes (parent)
– CPU context of the process (saved when the process is

suspended)
– Pointers to memory locations
– Pointers to open files

• OS maintains a data structure (e.g., list) of all
active processes

• Information about each process is stored in a
process control block (PCB)
– Process identifier
– Process state
– Pointers to other related processes (parent)
– CPU context of the process (saved when the process is

suspended)
– Pointers to memory locations
– Pointers to open files

8


