Lecture 22: Processes in xv6

Mythili Vutukuru
IIT Bombay
https://www.cse.iitb.ac.in/~mythili/os/

The process abstraction

The OS is responsible for concurrently running multiple processes
(on one or more CPU cores/processors)

— Create, run, terminate a process
— Context switch from one process to another
— Handle any events (e.g., system calls from process)

OS maintains all information about an active process in a process
control block (PCB)

— Set of PCBs of all active processes is a critical kernel data structure

— Maintained as part of kernel memory (part of RAM that stores kernel
code and data, more on this later)

PCB is known by different names in different OS

— struct proc in xv6 :
— task_struct in Linux ﬂ @ﬁ, E !

PCB in xv6: struct proc

* Page 23, process structure and process states

2334 enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };
—— — —

2335 -

2336 // Per—process state
2337 struct proc {

2338 uint sz; // Size of process memory (bytes)
2339 pde_t* pgdir; I 5age table

2340 char *kstack; // Bottom of kernel stack for this process
2341 enum procstate state; // Process state

2342 int pid; // Process 1D

2343 struct proc *parent; // Parent process

2344 struct trapframe *tf; l/ irap frame for current syscall
2345 struct context *context; // swtch() here to run process
2346 void *chan; // If non-zero, sleeping on chan
2347 int killed; // If non-zero, have been killed
2348 struct file *ofile[NOFILE]; // Open files

2349 struct inode *cwd; // Current direcEgﬁy

2350 char name[16]; // Process name (debugging)
2351 &;

2352

struct proc: kernel stack

2340 char *kstack; // Bottom of kernel stack for this process

* Recall: register state (CPU context) saved on user
stack during function calls, to restore/resume

later

* Likewise, CPU context stored on kernel stack
when process jumps into OS to run kernel code ¢ p
— Why separate stack? OS does not trust user stack £

— Separate area of memory per process within the sso
kernel, not accessible by regular user code

— Linked from struct proc of a process

struct proc: list of open files

2348 struct file *of11e[NOFILE]; // Open files

e Array of pointers to open files (struct file has
information about the open file, more on this later)

— When user opens a file, a new entry is created in this array,
and the index of that entry is passed as a file descriptor to
user

— Subsequent read/write calls on a file use this file
descriptor to refer to the file

— First 3 files (array indices 0,1,2) open by default for every Q)(\/
process: standard input, output and error

— Subsequent files opened by a process will occupy later

entries in the array Q/J;\ &\ \

J & :

struct proc: page table

2339 pde_t* pgdir; // Page table

* Every instruction or data item in the memory

image of process (code/data, stack, heap, etc.)

has an address
— Virtual addresses, starting from O

— Actual physical addresses in memory can be different
(all processes cannot store their first instruction at

address 0)
* Page table of a process maintains a ma

Oping

between the virtual addresses and physical

addresses (more on this later)

Process table (ptable) in xv6 Wa

2409 struct {
ol ||

2410 struct spinlock Tlock; (
2411 struct proc proc[NPROC]; ?

* CPU scheduler in the OS loops over all runnable processes,

picks one, and sets it running on the CPU

2412 } b%éb]e;
* ptable: Fixed-size array of all processes
— Real kernels have dynamic-sized data structures

2768 // Loop over process table Tooking for process to run.
2769 acquire(&ptable.lock);

2770 _for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
2771 if(p—>state != RUNNABLE)

2772 continue;

2773

2774 // Switch to chosen process. It is the process’s job
2775 // to release ptable.lock and then reacquire it
2776 // before jumping back to us.

2ITE c—>proc = p;

2778 switchuvm(p) ;

2779 ‘p->state = RUNNING;

—_— — 7

Process state transition examples

A process that needs to sleep (e.g., for
disk 1/0) will set its state to SLEEPING
and invoke scheduler

A process that has run for its fair
share will set itself to RUNNABLE
(from RUNNING) and invoke scheduler

Scheduler will once again find another
RUNNABLE process and set it to
RUNNING

2826 // Give up the CPU for one scheduling round.

2827 void

2828 yield(void)

2829 {

2830 acquire(&ptable.lock);

2831 myproc()->state = RUNNABLE;
2832 sched();

r——— L

2833 release(&ptable.lock);

2873 void

2874 sleep(void *chan, struct spinlock *1k)
2875 1

2876 struct proc *p = myproc();

2877

2878 if(p == 0)

2879 panic("sleep");

2880

2881 if(lk == 0)

2882 panic("sleep without 1k");

2883

2884 // Must acquire ptable.lock in order to
2885 // change p->state and then call sched.
2886 // Once we hold ptable.lock, we can be
2887 // guaranteed that we won’t miss any wakeup
2888 // (wakeup runs with ptable.lock locked),
2889 // so it’s okay to release 1k.

2890 if(1k != &ptable.lock){

2891 acquire(&ptable.lock);

2892 release(1k);

2893 }

2894 // Go to sleep.

2895 p->chan = chan;

2896 p->state = SLEEPING;

2897 — —

2898 sched();

2200

Summary of xv6 processes

* We have seen basics of PCB structure (struct
\Struct.
Ero/g), list of processes (ptable), scheduler
code, state transitions

* We will keep revisiting this xv6 code multiple
times to understand it better

— Each concept will deepen understanding further

