
Lecture 24: Trap handling in xv6

Mythili Vutukuru
IIT Bombay

https://www.cse.iitb.ac.in/~mythili/os/

Trap handling in xv6
• The following events cause a user process to “trap” into the

kernel (xv6 refers to all these events as traps)
– System calls (requests by user for OS services)
– Interrupts (external device wants attention)
– Program fault (illegal action by program)

• When above events happen, CPU executes the special “int”
instruction
– Example seen in usys.S, “int” invoked to handle system calls
– For hardware interrupts, device sends a signal to CPU, and CPU

executes int instruction
• Trap instruction has a parameter (int n), indicating type of

interrupt
– E.g., syscall has a different value of n from keyboard interrupt

2

Trap instruction (int n)
• Before trap: eip pointing to user program instruction, esp to user stack.

Suppose interrupt occurs now
• The following steps are performed by CPU as part of “int n” instruction

– Fetch n-th entry interrupt descriptor table (CPU knows memory address of IDT)
– Save stack pointer (esp) to internal register
– Switch esp to kernel stack of process (CPU knows location of kernel stack of

current process)
– On kernel stack, save old esp, eip (where execution stopped before interrupt

occurred, so that it can be resumed later)
– Load new eip from IDT, points to kernel trap handler

• Result: ready to run kernel trap handler code, on kernel stack of process
• Few details omitted:

– Stack, code segments (cs, ss) and a few other registers also saved
– Permission checks of CPU privilege levels in IDT entries (e.g., user code can

invoke IDT entry of system call, but not of disk interrupt)
– If interrupt occurs when already handling previous interrupt (already on kernel

stack), no need to save stack pointer again 3

Why a separate trap instruction?

• Why can’t we simply jump to kernel code, like we
jump to the code of a function in a function call?
– The CPU is executing user code in a lower privilege

level, but OS code must run at higher privilege
– User program cannot be trusted to invoke kernel code

on its own correctly
– Someone needs to change the CPU privilege level and

give control to kernel code
– Someone also needs to switch to the secure kernel

stack, so that the kernel can start saving state
– That “someone” is the CPU executing “int n”

4

Trap frame on the kernel stack

• Trap frame: state is pushed on
kernel stack during trap
handling
– CPU context of where execution

stopped is saved, so that it can be
resumed after trap

– Some extra information needed
by trap handler is also saved

• The “int n” instruction has so
far only pushed the bottom few
entries of trap frame
– The kernel code we are about to

see next will push the rest

5

Kernel trap handler (alltraps)

• IDT entries for all interrupts
will set eip to point to the
kernel trap handler “alltraps”
– Omit details of IDT construction

• Alltraps assembly code pushes
remaining registers to
complete trapframe on kernel
stack
– “pushal” pushes all general

purpose registers
• Invokes C trap handling

function named “trap”
– Push pointer to trapframe

(current top of stack, esp) as
argument to the C function

6

C trap handler function (1)
• C trap handler performs different actions based on kind of trap
• If system call, “int n” is invoked with “n” equal to a value

T_SYSCALL (in usys.S), indicating this trap is a system call
• Trap handler invokes common system call function

– Looks at system call number stored in eax (whether fork or exec or ….)
and calls the corresponding function

– Return value of syscall stored in eax

7

C trap handler function (2)
• If interrupt from a device, corresponding device-related code is called

– The trap number (value of “n” in “int n”) is different for different devices
• Timer is special hardware interrupt, and is generated periodically to

trap to kernel

8

C trap handler function (3)
• On timer interrupt, a process “yields” CPU to

scheduler
– Ensures a process does not run for too long

9

Return from trap

• Pop all state from kernel
stack

• Return from trap
instruction “iret” does the
opposite of int
– Pop values pushed by “int”
– Change back privilege level

• Execution of pre-trap code
can resume

10

Summary of xv6 trap handling

• System calls, program faults, or hardware interrupts
cause CPU to run “int n” instruction and “trap” to OS

• The trap instruction (int n) causes CPU to switch esp
to kernel stack, eip to kernel trap handling code

• Pre-trap CPU state is saved on kernel stack in the trap
frame (by int instruction + alltraps code)

• Kernel trap handler handles trap and and returns
from trap to whatever was running before the trap

11

