Lecture 24: Trap handling in xv6

Mythili Vutukuru
IIT Bombay
https://www.cse.iitb.ac.in/~mythili/os/

LS

Trap handling in xv6 W

* The following events cause a user process to “trap” into the
kernel (xv6 refers to all these events as traps)

— System calls (requests by user for OS services) o X N\
— Interrupts (external device wants attention) L =
— Program fault (illegal action by program)

 When above events happen, CPU executes the special “int”
Instruction

— Example seen in usys.S, “int” invoked to handle system calls

— For hardware interrupts,tdevice sends a signal to CPU, and CPU
executes int instruction

* Trap instruction has a parameter (int n), indicating type of
interrupt

— E.g., syscall has a different value of n from keyboard interrupt

o

‘QL‘?*"?

Trap instruction (int N}~
p (05\9

Before trap: eip pointing to user program instruction, esp to user stack.
Suppose interrupt occurs now

The following steps are performed by CPU as part of ”int'}” instruction

Fetch n-th entry interrupt descriptor table (CPU knows memory address of IDT)

Save stack pointer (esp) to internal register

Switch esp to kernel stack of process (CPU knows location of kernel stack of
current process)

On kernel stack, save old esp, eip (where execution stopped before interrupt
occurred, so that it can be resumed later)

Load new eip from IDT, points to kernel trap handler

Result: ready to run kernel ndler code, on kernel stack of process
Few details omitted:

Stack, code segments (cs, ss) and a few other registers also saved

Permission checks of CPU privilege levels in IDT entries (e.g., user code can
invoke IDT entry of system call, but not of disk interrupt)

If interrupt occurs when already handling previous interrupt (already on kernel
stack), no need to save stack pointer again

Why a separate trap instruction?

* Why can’t we simply jump to kernel code, like we
jump to the code of a function in a function call?

— The CPU is executing user code in a lower privilege
level, but OS code must run at higher privilege

— User program cannot be trusted to invoke kernel code
on its own correctly

— Someone needs to change the CPU privilege level and
give control to kernel code

— Someone also needs to switch to the secure kernel
stack, so that the kernel can start saving state

— That “someone” is the CPU executing “int n”

Trap frame on the kernel stack

Trap frame: state is pushed on

kernel stack during trap
handling

— CPU context of where execution
stopped is saved, so that it can be
resumed after trap

— Some extra information needed
by trap handler is also saved
The “int n” instruction has so
far only pushed the bottom few
entries of trap frame

— The kernel code we are about to
see next will push the rest

0600 // Layout of the trap frame built on the stack by the
0601 // hardware and by trapasm.S, and passed to trap().
0602 struct trapframe {

d%U?"'TT'T?ﬁT!TE?E—;; pushed by pusha

0604 uint edi;
0605 uint esi;
0606 uint ebp;
0607 uint oesp;
0608 uint ebx;
0609 uint edx;

// useless & ignored
0610 uint ecx;
0611 uint eax;

2 2 Jlonghap

0613 // rest of trap f\rame
0614 ushort gs;
0615 ushort paddingl;
0616 ushort fs;
0617 ushort padding2;
0618 ushort es;
0619 ushort padding3;
0620 ushort ds;
0621 ushort padding4;
0622 uint _trapno;
0623 —
0624 // below here defined by x86 hardware
0625 uint err;

0626 uint eip;

0627 ushoftTs;

U

0628 ushort padding5;

0629 uint eflags;

0630

0631 // below here only when crossing rings, such as from user to kernel
0632 uint_esp;

0633 ushort ss;

0634 ushort padding6;

0635 };

Kernel trap handler (alltraps)

* |DT entries for all interrupts
“will set eip to point to the
kernel trap handler “alltraps”

— Omit details of IDT construction

e Alltraps assembly code pushes
remaining registers to
complete trapframe on kernel
stack

— “pushal” pushes all general
purpose registers

* |Invokes C trap handling
function named “trap”
— Push pointer to trapframe

(current top of stack, esp) as
argument to the C function

|”

3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331

#include "mmu.h"

vectors.S sends all traps here.
.glob1 alltraps

alltraps:
Build trap frame. 624;17

pushl %ds
pushl %es

pushl %fs ’t%
pushl %gs
pushal

e—————

\

R

N\

RN

Set up data segments.
movw $(SEG_KDATA<<3), %ax
movw %ax, %ds

movw %ax, %es

Ca11 tra;;tf;S where tf=kesp

pushl %esp_
call tra
adai $4, %esp

Return falls through to trapret...
.glob1 trapret
trapret:

popal

popl %gs

popl %fs

popl %es

popl %ds

addl $0x8, %esp # trapno and errcode

iret

C trap handler function (1)

C trap handler performs different actions based on kind of trap

If system call, “int n” is invoked with “n” equal to a value
T _SYSCALL (|n usys. S) indicating this trap is a system call
Trap handler invokes common system call function

— Looks at system call number stored in eax (whether fork or exec or)
and calls the corresponding function ug\\c;, S

— Return value of syscall stored in eax

3400 void 3700 void
3401 trap(struct trapframe *tf) g;g%ﬁiw
3402 { 3703 int num;

3403 1'f£t’fit_ﬂz_c; ==_T_SYSCALL) 3704 struct proc
3404 if(myprocO—>killed)

'
=

curproc = myproc();

3705

. . 3706 num = curproc->tf->eax;
3405 exit(); 3707 if(num > 0 & num < NELEM(syscalls) & syscalls[num]) {
3406 myproc()->tf = tf; 3708 roc->tf->eax = syscal IEL_Egm] 0;
3407 —vﬂs% 3709 } else]
3408 “if(myproc()—>k1'ﬂed) 3710 cprintf("%d %s: unl.mown sys call %d\n",
4 3711 curproc—>pid, curproc->name, num);
3409 exit(); 3712 curproc—>tf->eax = -1;
3410 return; 3713}

3411} 3714 }

C trap handler function (2)

* If interrupt from a device, corresponding device-related code is called
— The trap number (value of “n” in “int n”) is different for different devices

. MEiecial hardware interrupt, and is generated periodically to
trap to kernel

3413 switch(tf->trapno){

3414 "case T_IRQO + IRQ_TIMER:
3415 if(cpurd() == 0){

3416 acquire(&tickslock);
3417 Licks++;

3418 wakeup(&ticks);

3419 release(&tickslock);
3420 }

3421 Tapiceoi();

3422 break;

3423 Q_EEEE—I=IRQQ—i_£EQ:IEEj

3424 ideintr();
3425 lapiceoi();

3426 break;

3427 case T_IRQO + IRQ_IDE+1:

3428 // Bochs generates spurious IDE1l interrupts.

3429 break;

3430 case T_IRQO + IRQ KBD: —

3431 kbdintr();

3432 iapiceoi();

3433 break; 8

C trap handler function (3)

* On timer interrupt, a process “vields” CPU to
scheduler

— Ensures a process does not run for too long

3471 // Force process to give up CPU on clock tick.

3472 // If interrupts were on while Tocks held, would need to check nlock.
3473 if(myproc() && myproc()->state == RUNNING &&

3474 tf->trapno == T_IRQO+IRQ_TIMER)

3475 yieldQ; —

3476

2826 // Give up the CPU for one scheduling round.
2827 void

2828 yield(void)

2829 {

2830 acquire(&ptable.lock);

2831 myproc()->state = RUNNABLE;

2832 sched();

2833 release(&ptable.lock);

2834 }

Return from trap

3300 #include "mmu.h"

3301
3302 # vectors.S sends all traps here.
3303 .glob1 allt
* Pop all state from kernel st Laeiaaey
L(3305 # Build trap frame.
3306 — pushl %ds
Stac 3307 pushl %es
3308 pushl %fs
* Return from trap S e
3311
. . (“: ”
instruction “iret” does the 312 # set up dara seqnents.
- 3313 movw S(SEG_KDATA<<3), %ax
. . 3314 movw %ax, %ds
OppOSIte Of Int 3315 movw %ax, %es
= 3316

3317 # Call trap(tf), where tf=Y%esp

— Pop values pushed by “int” 318 iR %ees

3319 call trap

— Change back privilege level T e

3321
3322 # Return falls through to trapret...

* Execution of pre-trap code — 32 .0 trapree
3375 popal
Can resu me 3326 “popT™ys
3327 popl %fs
3328 popl %es
3329 popl %ds
3330 addl $0x8, %esp # trapno and errcode

3331 diret

Summary of xv6 trap handling

* System calls, program faults, or hardware interrupts

cause CPU to run “int n” instruction and “trap” to OS

* The trap instruction (int n) causes CPU to switch esp
to kernel stack, eip to kernel trap handling code

* Pre-trap CPU stat\eis saved on kernel stack in the trap
_frame (by int instruction + alltraps code)

* Kernel trap handler handles trap and and returns
from trap to whatever was running before the trap

11

