Lecture 25: Context switching in
XV6

Mythili Vutukuru
IIT Bombay
https://www.cse.iitb.ac.in/~mythili/os/

v&o\\oh

Context switching in xv6

Every CPU has a scheduler thread (special process
that runs scheduler code)

Scheduler goes over list of processes and switches to
one of the runnable ones

After running for some time, the process switches
back to the scheduler thread, when:

— Process has terminated

— Process needs to&o (e.g., blocking read system call)

— Process yields after running for long (timer interrupt) o 92
Scheduler thread runs its loop and picks next process [\ S
—

to run, and the story repeats
Context switch only happens when process is already K\/ e-\>5
in kernel mode. ngck

— Example: P1 running, timer interrupt, P1 moves to
kernel mode, switches to scheduler thread, scheduler
switches to P2, P2 returns to user mode

Scheduler and sched

* Scheduler switches to user process in “scheduler” function

* User process switches to scheduler thread in the “sched”
function (invoked from exit, sleep, yield)

2757 void

2758 scheduler(void) /—_\,\\ /\
2760 struct proc *p;

2761 struct cpu *c = mycpu();

2762 c->proc = 0;

2763

2764 for(;;){

2765 // Enable interrupts on this processor.

2766 stiQ);

2767

2768 // Loop over process table Tooking for process to run.
2769 acquire(&ptable.lock);

2770 Q___i2;ég_g,p:anE+E:;;éN§E:_§pxab1eiproc[NPROC]; p++){ -~
2771 (p->state T= LE)

2772 continue; S

2773

2774 // Switch to chosen process. It is the process's job
2775 // to release ptable.lock and then reacquire it
2776 // before jumping back to us.

2777 c->proc = p;

2778 switchuvm(p) ;

2779 p->state = RUNNING;

2780 _—

2781 swtch(&(c->scheduler), p->context);

2782 “ switchkvm() ;

2783

2784 // Process is done running for now.

2785 // It should have changed its p->state before coming back.
2786 c—>proc = 0;

2787 }

2788 release(&ptable.lock);

2789

2790 }

2791 }

2807 void

2808 sched(void)

2809 {

2810 1int intena;

2811 struct proc *p = myproc();

2812

2813 if('holding(&ptable.Tlock))

2814 panic("sched ptable.lock™);
2815 if(mycpu(QQ->ncli != 1)

2816 panic("sched Tocks");

2817 if(p->state == RUNNING)

2818 panic("sched running");

2819 if(readeflags()&FL_IF)

2820 panic("sched interruptible");
2821 1intena = mycpu()->intena;

2822 _swtch(&p—>context, mycpu()->scheduler);
2823 mycpu()->intena = intena;

2824 }

Who calls sched()?

* Yield: Timer interrupt

occurs, process has run
enough, gives up CPU

e Exit: Process has called
exit, sets itself as zombie,
gives up CPU

* Sleep: Process has
performed a blocking
action, sets itself to sleep,
gives up CPU

2826 // Give up the CPU for one scheduling round.
2827 void

2828 yield(void)

2829 {

2830 acquire(&ptable.lock);

2831 myproc()->state = RUNNABLE;
2832 sched();

2833 release(&ptable.lock);

2834 }

2662 // Jump into the scheduler, never to return.

2663 curproc->state = ZOMBIE;
2664 sched();

2665 “panic("zombie exit");
2666 }

2894 // Go to sleep.

2895 p->chan = chan;

2896 p->state = SLEEPING;
2897

2898 sched();
28909 ——

2326 struct context {
2327 uint edi;

struct context S0 i e
2330 uint ebp;

P) —> P2 B, e

* |In both scheduler and sched functions, the

function “swtch” switches between two “contexts”
Qe -~ .

* Context structure: set of registers to be saved
when switching from one process to another

— We must save_“eip” where the process stopped
execution, so that it can resume from same point when
it is scheduled again in future

* Context is pushed onto kernel stack, struct proc
maintains a pointer to the context structure on the
stack (p->context) —%

Context structure vs. trap frame

* Trapframe (p->tf) also contains a pointer to some register

state stored on kernel stack of a process. What is the

difference?

'I'Lap_f&rp_e is saved when CPU switches to kernel mode (e.g., eip
in trapframe is eip value where syscall was made in user code)

Context structure is saved when process switches to another

2342
2343
2344
2345

process (e.g., eip value when swtch is called)

Both reside on kernel stack, struct proc has pointers to both
Example: P1 has timer interrupt, saves trapframe on kstack,

then calls swt swtch, saves context structure on kstack

int pid; // Process ID
struct proc *parent; // Parent process

struct trapframe *tf; // Trap frame for currént syscall
struct context :Sgggiifi\\‘—_jj—ifiii() here4j_—_ii—Eiiifjj”"—’_,,————iai

R
swtch function (1) %‘W

Both CPU thread and process maintain a context
* —
structure pointer variable (struct context *) Y ‘)

swtch takes two arguments: address of old context
pointer to switch from, new context pointer to switch to

When invoked from scheduler: address of scheduler’s
context pointer, process context pointer

2781 swtch(&(c—>scheduler), p->context);
Ef\"%—v—

When invoked from sched: address of process context
pointer, scheduler context pointer

2822 swtch(&p->context, mXEEE£2:3§chedu1er);

swtch function (2)

What is on the kernel stack when a process/thread has just invoked the swtch?
— Caller save registers (refer to C calling convention)
— Return address (eip)

What does swtch do?
— Push remaining registers on old kernel stack (only callee save registers need to be saved)
— Save pointer to this context into context structure pointer of old process
— Switch esp from old kernel stack to new kernel stack
— ESP noMf new process
— _Po\p callee-save registers from new stack
— Rwom function call (pops return address, caller save registers)

What will swtch find on new kernel stack? Where does it return to?
— Whatever was pushed when the new process gave up its CPU in the past

Result of swtch: we switched kernel stacks from old process to new process,
CPU is now executing new process code, resuming where the process gave up its

CPU by calling swtch in the past
ot ey [2F
e —p = S

‘

I L

cket

e
\C‘*ﬂ\i—\

When swtch function call is made, kernel stack
of old process already has (reading from top):

eiE, arguments to swtch (address of old context
pointer, new context pointer)

Store address of old context pointer into eax
— Address of struct context * variable in eax

Store value of new context pointer into edx
— edx points to new context structure

P e registers on kernel stack of old
process (eip, caller save already presen

Top of stack esp now points to complete context
structure of old process. Go to address saved in
eax (old context pointer) and rewrite it to point

to updated context of old process
— struct context * in struct proc is updated

Switch stacks: Copy new context pointer stored
In edx (top of stack of new process) into esp

— CPU now on stack of new process
Pop registers from new context structure, and
return from swtch in new process

— CPU now running new process code

es

wtch function (3)

X new
AN 3 e

/

3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078

Context switch

#

#

wvoid swtch(struct context **old, stru context *new);
#

Save the current registers on the stack, ckeating

a struct context, and save its address in *pld.

Switch stacks to new and pop previously-savg¢d registers.

.glob1 swtch

swtch:
movl 4(%esp), %eax
movl 8(%esp), %edx

Cor

Save old callee-saved registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks

mov] %esp, (%eax)

mov1 %egézgsiﬁ "

Load new callee-saved registers
popl %edi

popl %esi

popl %ebx

popl %ebp

ret

——

Summary of context switching in xv6

What happens during context switch from process P1 to P2?

— P1 goes to kernel mode and gives up CPU (timer interrupt or exit or
sleep)

— P2 is another process that is ready to run (it had given up CPU after
saving context on its kernel stack in the past,igut is now ready to run)

— P1 switches to CPU scheduler thread [—> S —p Pl
— Scheduler thread finds runnable process P2 and switches to it
— P2 returns from trap to user mode

Process of switching from one process/thread to another SN’\'C\I\
— Save all register state (CPU context) on kernel stack of old process

— Update context structure pointer of old process to this saved context
— Switch from old kernel stack to new kernel stack

— Restore register state (CPU context) from new kernel stack, and
resume Nnew process

o

il

10

