
Lecture 27: Virtual memory and
paging in xv6

Mythili Vutukuru
IIT Bombay

https://www.cse.iitb.ac.in/~mythili/os/

Virtual address space in xv6
• 32-bit OS, so 2^32=4GB virtual address

space for every process
• Process address space divided into

pages (4KB by default), and every valid
logical page used by the process is
mapped to a physical frame by the OS
(no demand paging)

• Page table of a process maps virtual
addresses to physical addresses
– One page table entry per page, which

contains the physical frame number
(PFN) and various flags/permissions for
the page

2

Page table in xv6
• Virtual address space = 2^32 bytes, page size = 4KB = 2^12 bytes

– Up to 2^20 pages per process
• Page table is a logical array of 2^20 page table entries (PTE)

– 20 bit page number is used to index into page table to locate PTE
• Each PTE has 20 bit physical frame number, and some flags

– PTE_P indicates if page is present (if not set, access will cause page fault)
– PTE_W indicates if writeable (if not set, only reading is permitted)
– PTE_U indicates if user page (if not set, only kernel can access the page)

• Address translation: use page number (top 20 bits of virtual address)
to index into page table, find physical frame number, add 12-bit offset

3

Two level page table
• 2^20 PTEs cannot be stored contiguously, page table has two levels

– 2^10 “inner” page table pages, each with 2^10 PTEs
– Outer page directory stores PTE-like references to the 2^10 inner page

table pages
– Physical address of outer page directory is stored in CPU’s cr3 register,

used by MMU during address translation
• 32 bit virtual address = 10 bits index into page directory, next 10

bits index into inner page table, last 12 bits are offset within page
– PFN from PTE + offset = physical address

4

Process virtual address space in xv6
• Memory image of a process starting at address 0 has

– Code/data from executable
– Fixed size stack (with guard page)
– Expandable heap

• Kernel code/data is mapped beginning at address
KERNBASE (2GB)
– Kernel code/data
– Free pages maintained by kernel
– Some space reserved for I/O devices

• Page table of a process contains two sets of PTEs
– User entries map low virtual addresses to physical

memory used by the process for its
code/data/stack/heap

– Kernel entries map high virtual addresses to physical
memory containing OS code and data structures
(identical entries in all processes)

• Process can only access memory mapped by page table
– Access only possible via virtual addresses in page table

• Different page table for every process, page table
needs to be switched during a context switch 5

OS page table mappings (1)
• OS code/data structures part of virtual address space of every process.

– Page table entries map high virtual addresses (2GB to 2GB+PHYSTOP) to OS
code/data located in physical memory (0 to PHYSTOP)

– Only one copy of OS code in memory, mapped into all process page tables
– Kernel mappings are identical in all processes

• Can’t you directly access OS code using its physical address? No. With
paging and MMU turned on, physical memory can only be accessed by
assigning a virtual address to it, and adding a mapping from virtual to
physical address in page table.

• What happens during a trap? The same page table can be used to access
kernel during a trap. If OS is not part of virtual address space, will need new
page table during trap.

6

OS page table mappings (2)
• Kernel page table mappings map virtual addresses 2GB: (2GB+PHYSTOP) to

physical addresses 0 : PHYSTOP
– 0 to PHYSTOP has memory for kernel code/data, I/O devices, mostly free pages

• Assigning free pages to processes
– Suppose physical frame P is initially mapped into kernel part of address space at

virtual address V (we will have V = P+2GB)
– When assigned to a user process, P is assigned another virtual address U (<2GB)
– Same frame P mapped twice into page table, at virtual addresses U and V
– Kernel and user access same memory using different virtual addresses

• Every byte of RAM can consume 2 bytes of virtual address space, so xv6 cannot
use more than 2GB of RAM (since max 32-bit virtual address space is 4GB)
– Real kernels deal with this better

7

Maintaining free memory
• After boot up, RAM contains OS

code/data and free pages
• OS collects all free pages into a

free list, so that it can be
assigned to user processes
– Used for user memory

(code/data/stack/heap) and page
tables of user processes

• Free list is a linked list, pointer to
next free page embedded within
previous free page
– Kernel maintains pointer to first

page in the list

8

alloc and free operations
• Anyone who needs a free page calls kalloc()

– Sets free list pointer to next page and returns first free page on list
• When memory needs to be freed up, kfree() is called

– Add free page to head of free list, update free list pointer

9

Summary of virtual memory in xv6

• Only virtual addressing, no demand paging
• 4GB virtual address space for each process
• 2 tier page table: outer pgdir, inner page tables
• Process address space has:

– User memory image at low virtual addresses (<2GB)
– Kernel code/data mapped at high virtual addresses

• Kernel part of address space has OS code/data,
memory for I/O devices, and free pages
– Assigned to user processes as needed

10

