Lecture 27: Virtual memory and
paging in Xvo6
Mythili Vutukuru

IIT Bombay
https://www.cse.iitb.ac.in/~mythili/os/

Virtual address space in xv6

32-bit OS, so 2232=4GB virtual address

space for every process

Process address space divided into
pages (4KB by default), and every valid
logical page used by the process is
mapped to a physical frame by the OS
(no demand paging)

Page table of a process maps virtual

addresses to physical addresses

— One page table entry per page, which
contains the phv5|cal frame number
(PFN) and various flags/perm|55|ons for
the page

[—

Page table in xv6

* Virtual address space = 232 bytes, page size = 4KB = 2"12 bytes
— Up to 2”20 pages per process
* Page table is a logical array of 2”20 page table entries (PTE)
— 20 bit page number is used to index into page table to locate PTE
e Each PTE has 20 bit physical frame number, and some flags
— PTE_P indicates if page is present (if not set, access will cause page fault)
— PTE_W indicates if writeable (if not set, only reading is permitted)
— PTE_U indicates if user page (if not set, only kernel can access the page)

* Address translation: use page number (top 20 bits of virtual address)
\IP toindex into page table, find physical frame number, add 12-bit offset

—— -
\ v,::@é__/_t\ PEN | Hags \
| PEN 4+ ofSeer = FA

Two level page table

e« 2720 PTEs cannot be stored contiguously, page table has two levels
— 2710 “inner” page table pages, each with 2210 PTEs

— Outer page directory stores PTE-like references to the 2710 inner page
table pages

— Physical address of outer page directory is stored in CPU’s cr3 register,
used by MMU during address translation

e 32 bit virtual address = 10 bits index into page directory, next 10
bits index into inner page table, last 12 bits are offset within page

— PFN from PTE + offset = physical address
O %>

0773 // A virtual address ’'l1a’ has a three-part structure as follows:

0774 //
0775 // + 10 + -10 + 12 + (Y%
0776 // | Page Directory | Page Table | Offset within Page | —:>

0777 // | Index | Index | | ()}Jh,
0778 // + - t t
0780

0779 // \~—- PDX(va) -/ \-— PTX(va) —-/ \
-\ \—:’___T
4

Process virtual address space in xv6

Memory image of a process starting at address 0 has BN ”
code [dats

— Code/data from executable
— Fixed size stack (with guard page)

— Expandable heap CXU@J\O\

Kernel code/data is mapped beginning at address
'KERNBASE (2GB) Stack

— Kernel code/data

— Free pages maintained by kernel x’\QDﬂ?
— Some space reserved for /O devices U P

Page table of a process contains two sets of PTEs

— User entries map Jow virtual addresses to physical _
memory used by the process for its a(’\?')

code/data/stack/heap OS -—H

— Kernel entries map high virtual addresses to physical
memory containing OS codea ata structures ,
(identical entries in all processes) ,
Process can only access memory mapped by page table :
— Access only possible via virtual addresses in page table \

Different page table for every process, page table
needs to be switched during a context switch —_—

OS page table mappings (1)

* OS code/data structures part of virtual address space of every process.

— Page table entries map high virtual addresses (2GB to 2GB+PHYSTOP) to OS
code/data located in physical memory (0 to PHYSTOP)

— Only one copy of OS code in memory, mapped into all process page tables
— Kernel mappings are identical in all processes
 Can’tyoudirectly access OS code using its physical address? No. With
paging and MMU turned on, physical memory can only be accessed by

assigning a virtual address to it, and adding a mapping from virtual to
physical address in page table.

 What happens during a trap? The same page table can be used to access
kernel during a trap. If OST1s not part of virtual address space, will need new

page table during trap. ‘_’\
9\ 8 Oﬂ\ r>

‘9@ — > PRMSTO P gl —

OS page table mappings (2)

* Kernel page table mappings map virtual addresses 2GB: (2GB+PHYSTOP) to
physical addresses 0 : PHYSTOP

— 0to PHYSTOP has memory for kernel code/data, 1/O devices, mostly free pages
* Assigning free pages to processes

— Suppose physical frame P is initially mapped into kernel part of address space at
virtual address V (we will have V = P+2GB)

— When assigned to a user process, P is assigned another virtual address U (<2GB)
— Same frame P mapped twice into page table, at virtual addresses U and V
— Kernel and user access same memory using different virtual addresses

* Every byte of RAM can consume 2 bytes of virtual address space, so xv6 cannot
use more than 2GB of RAM (since max 32-bit virtual address space is 4GB)

— Real kernels deal with this better

’\}z——*?\’
\/-——>? AH®

e

Maintaining free memory

* After boot up, RAM contains OS 116 —SERIEE Tim next:
code/data and free pages iy —
 OS collects all free pages into a 20 strce spiifiodk Tods
_free list, so that it can be 120 seruce run Spreelist;

assigned to user processes KeneAn \U’ffm e

— Used for user memory \4«’?!;
(code/data/stack/heap) and page
tables of user processes

* Free list is a linked list, pointer to |
next free page embedded within -
previous free page
— Kernel maintains pointer to first \ }</\,
_page in the list

alloc and free operations

Anyone who needs a free page calls kalloc()

— Sets free list pointer to next page and returns first free page on list
When memory needs to be freed up, kfree() is called

— Add free page to head of free list, update free list pointer

~—

3163 void
3186 char* 3164 kfree(char *v)
3187_kalloc(void) e
—_— 3166 struct run *r;
3188 { 3167
3189 struct run *r; 3168 if((uint)v % PGSIZE || v < end || V2P(v) >= PHYSTOP)
3190 3169 panic("kfree™);
: 3170
gig% 1f(kme'f"”'°’;;1°Ck% - 3171 // Fi1l with junk to catch dangling refs.
acquire(&kmem.lock); 3172 memset(v, 1, PGSIZE);
3193 _r = kmem.freelist; 3173
3194 1T0r) 3174 if(kmem.use_lock)
3105 kmem_freelist = r->next; 3175 acquire(&kmem.lock);
3196 if(kmem.use_Tock) T8 F = Kstiict MRS
3177 “T—>next = kmem.freel :
3197 release(&kmem.Tock) ; 3178 TMT‘ITFfr-JL
3198 return (char*)r; 3179 if(kmem.use_lock)
3199 } N\Qm 3180 re'lease(&kmem lock) ;
Y\ 3181 }

®~—vD-%E\“> S

Summary of virtual memory in xv6

Only virtual addressing, no demand paging
4GB virtual address space for each process

2 tier page table: outer pgdir, inner page tables
Process address space has:

— User memory image at low virtual addresses (<2GB)
— Kernel code/data mapped at high virtual addresses

Kernel part of address space has OS code/data,
memory for I/O devices, and free pages

— Assigned to user processes as needed

10

