Lecture 29: Locking in xv6

Mythili Vutukuru
IIT Bombay
https://www.cse.iitb.ac.in/~mythili/os/

'l Po
Why locking in xv6? L., ../
doko

No threads in xv6, SO no two user programs can access same
userspace memory image

— No need for userspace locks like pthreads mutex

However, scope for concur in xv6 kernel

— Two processes in kernel mode in different CPU cores can access,
same kernel data structures P\ —2 Kona) —> A

— When a process is running in kernel mode, another trap occurs,
and the trap handler can access data that was being accessed by
previous kernel code

Solution: spinlocks used to protect critical sections

. . \-’-—_\
— Limit concurrent access to kernel data structures that can result

in race conditions
xv6 also has a sleeping lock (built on spinlock, not discussed)

Spinlocks in xv6

Acquiring lock: uses xchg x86 atomic
instruction (test and set)

— Atomically set lock variable to 1 and
returns previous value

— If previous value is O, it means free lock

has been acquired, success!

— If previous value is 1, it means lock is held
by someone, continue to spin in a busy

while loop till success
Releasing lock: set lock variable to O

Must disable interrupts on CPU core
before spinning for lock

— Interrupts disabled only on this CPU core

to prevent another trap handler running

and requesting same lock, leading to
deadlock

— OK for process on another core to spin for
same lock, as the process on this core will

release it
— Disable interrupts hefor in

o spin
(otherwise, vulnerable window after lock
acquired and before interrupts disabled)

1500 // Mutual exclusion lock.

150;_%&:4&39_{
150 uint Tocked;

1503
1504
1505
1506
1507
1508
1509

1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

// Is the Tock held?
-—

// For debugging:

char *name;

struct cpu *cpu;

uint pcs[10];

// Name of lock.

// The cpu holding the Tlock.

// The call stack (an array of program counters
// that locked the Tock.

¥

void
acquire(struct spinlock *1k)
{

pushc1i(); // disable interrupts to avoid deadlock.

“1f(holding(Tk))
_o o/ Sucess
// The xchg is atomic. -

panic("acquire");
N
while(xchg(&lk->Tocked, 1) != 0)
s D SY\(_

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section’s memory

// references happen after the lock is acquired.
__sync_synchronize();

// Record info about Tlock acquisition for debugging.
Tk=>cpu = mycpu();
getcallerpcs(&lk, Tk—>pcs);)

}

oL — L —=>at

CL PL—2 @gP\f\ml\ﬁ N

Disabling interrupts
[l L2

Must disable interrupts on CPU core
before beginning to spin for spinlock

1662 // Pushcli/popcli are like cli/sti except that they are matched:

Interrupts stay disabled until lockis i/ 1t s ol o i penly g i s
released i

What if multiple spinlocks are ppt AR LA

acql“red? ig?g int eflags;

1671 eflags = readeflags();

— Interrupts must stay disabled until all 1z aio;
673 if(mycpuO->ncli == 0)
locks are released 1673 {f(mycuO-ncls

Q-1 = efl . IE:
Disabling/enabling interruptS' 1675‘}\“?55?&%}??31; eflags & FL_IF
. 1676
. . . . 1677
— pushcli disables interrupts on first lock 1678 void
" . 1679 popcli(void)
acquire, increments count for future 150 ¢

1681 if(readeflags Q&FL_IF)
IOCkS 1682 panic("popcli - interruptible");

— popcli decrements count, reenables a0 el < 0)
interrupts only when all locks released 1685 ifycouOncli == 0 & mycpu—>intena)

1686 sti();

and count is zero 1687) T

2409 struct {

ptable.lOCk (1) 2410 struct spinlock Tock;

2411 struct proc proc[NPROC];
2412 } ptable;

 The process table protected by a lock, any access
to ptable must be done with ptable.lock held

* Normally, a process in kernel mode acquires
ptable.lock, changes ptable, releases lock
— Example: when allocproc allocates new struct proc

* But during context switch from process P1 to P2,

ptable structure is being changed all through
context switch, so when to release lock?

— P1 acquires lock, switches to scheduler, switches to
P2, P2 releases lock

ptable.lock (2)

2826 // Give up the CPU for one scheduling round.
2827 void

Every function that calls sched() to give 2828 yield(void)

up CPU will do so with ptable.lock held. 2829 {
Which functions invoke sched()? 2830 acquire(&ptable.lock);
— _Yield, when a process gives up CPU due to 2831 myproc()->state = RUNNABLE;
timer interrupt 2832 w_
2833 release(&ptable.lock);

— Sleep, when process wishes to block
— _Exit, when process terminates

Every function that swtch switches to will (\7 \ — P l_

release ptable.lock. What functions does

2834 + T

/
swtch return to? N
— Yield, yvhen switg:hin.g in a process thatis s el
resuming after yielding is done D885 statie fnb Firsk = 1;
— Sleep, when switching in a process that is il K o
waking up after sleep 2858 '
2859 if (first) {
— Mfor neWIV created processes 2860 // Some initialization functions must be run in the context
2861 // of a regular process (e.g., they call sleep), and thus cannot
Purpose of forkret: to release ptable.lock 2862 // be run Fron nainO.
. . irst = 0;
after context switch, before returning 2864 1init(ROOTDEV);
from trap to userspace o RS

}Jc {G% @C

ptable.lock (3) é//ﬂz

Scheduler goes into loop
with lock held

Switch to P1, P1 switches
back to scheduler with lock
held, scheduler switches to
P2, P2 releases lock

Periodically, end of looping
over all processes, releases
lock temporarily

— What if no runnable
process found due to
interrupts being disabled?
Release lock, enable
interrupts, allow processes
to become runnable.

2757 void S _——? ? \

2758 scheduler(void)

2759 {

2760 struct proc *p;

2761 struct cpu *c = mycpu();
2762 c—>proc = 0;

2763

2764 for(;;){

2765 // Enable interrupts on this processor.

2766 sti();

2767

2768 // Loop over process table looking for process to run.
2769 acquire(&ptable.lock);

2770 Tfor(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;

// Switch to chosen process. It is the process’s job
// to release ptable.lock and then reacquire it

// before jumping back to us.

c—>proc = p;

switchuvm(p);

p->state = RUNNING;

swtch(&(c->scheduler), p->context);
switchkvm(Q);

// Process is done running for now.
// It should have changed its p->state before comin
c—>proc = 0;

ack.

2787 1

2788 release(&ptable.lock);
2789

2790 }

Summary

* Spinlocks in xv6 based on xchg atomic
instruction

* Processes in kernel mode hold spinlock when
accessing shared data structures, disabling
interrupts on that core while lock is held

e Special ptable.lock held across context switch

