
Lecture 29: Locking in xv6

Mythili Vutukuru
IIT Bombay

https://www.cse.iitb.ac.in/~mythili/os/



Why locking in xv6?
• No threads in xv6, so no two user programs can access same 

userspace memory image
– No need for userspace locks like pthreads mutex

• However, scope for concurrency in xv6 kernel
– Two processes in kernel mode in different CPU cores can access 

same kernel data structures
– When a process is running in kernel mode, another trap occurs, 

and the trap handler can access data that was being accessed by 
previous kernel code

• Solution: spinlocks used to protect critical sections
– Limit concurrent access to kernel data structures that can result 

in race conditions
• xv6 also has a sleeping lock (built on spinlock, not discussed)

2



Spinlocks in xv6
• Acquiring lock: uses xchg x86 atomic 

instruction (test and set)
– Atomically set lock variable to 1 and 

returns previous value
– If previous value is 0, it means free lock 

has been acquired, success!
– If previous value is 1, it means lock is held 

by someone, continue to spin in a busy 
while loop till success

• Releasing lock: set lock variable to 0
• Must disable interrupts on CPU core 

before spinning for lock
– Interrupts disabled only on this CPU core 

to prevent another trap handler running 
and requesting same lock, leading to 
deadlock

– OK for process on another core to spin for 
same lock, as the process on this core will 
release it

– Disable interrupts before starting to spin 
(otherwise, vulnerable window after lock 
acquired and before interrupts disabled)

3



Disabling interrupts
• Must disable interrupts on CPU core 

before beginning to spin for spinlock
• Interrupts stay disabled until lock is 

released
• What if multiple spinlocks are 

acquired?
– Interrupts must stay disabled until all 

locks are released
• Disabling/enabling interrupts:

– pushcli disables interrupts on first lock 
acquire, increments count for future 
locks

– popcli decrements count, reenables 
interrupts only when all locks released
and count is zero

4



ptable.lock (1)

• The process table protected by a lock, any access 
to ptable must be done with ptable.lock held

• Normally, a process in kernel mode acquires 
ptable.lock, changes ptable, releases lock
– Example: when allocproc allocates new struct proc

• But during context switch from process P1 to P2, 
ptable structure is being changed all through 
context switch, so when to release lock?
– P1 acquires lock, switches to scheduler, switches to 

P2, P2 releases lock

5



ptable.lock (2)
• Every function that calls sched() to give 

up CPU will do so with ptable.lock held. 
Which functions invoke sched()?
– Yield, when a process gives up CPU due to 

timer interrupt
– Sleep, when process wishes to block
– Exit, when process terminates

• Every function that swtch switches to will
release ptable.lock. What functions does 
swtch return to?
– Yield, when switching in a process that is 

resuming after yielding is done
– Sleep, when switching in a process that is 

waking up after sleep
– Forkret for newly created processes

• Purpose of forkret: to release ptable.lock
after context switch, before returning 
from trap to userspace

6



ptable.lock (3)
• Scheduler goes into loop 

with lock held
• Switch to P1, P1 switches 

back to scheduler with lock 
held, scheduler switches to 
P2, P2 releases lock

• Periodically, end of looping 
over all processes, releases 
lock temporarily
– What if no runnable 

process found due to 
interrupts being disabled? 
Release lock, enable 
interrupts, allow processes 
to become runnable.

7



Summary

• Spinlocks in xv6 based on xchg atomic 
instruction

• Processes in kernel mode hold spinlock when 
accessing shared data structures, disabling 
interrupts on that core while lock is held

• Special ptable.lock held across context switch

8


