
Lecture 3: Process API

Mythili Vutukuru
IIT Bombay



What API does the OS provide to user
programs?

• API = Application Programming Interface
= functions available to write user programs

• API provided by OS is a set of “system calls”
– System call is a function call into OS code that runs at

a higher privilege level of the CPU
– Sensitive operations (e.g., access to hardware) are

allowed only at a higher privilege level
– Some “blocking” system calls cause the process to be

blocked and descheduled (e.g., read from disk)

• API = Application Programming Interface
= functions available to write user programs

• API provided by OS is a set of “system calls”
– System call is a function call into OS code that runs at

a higher privilege level of the CPU
– Sensitive operations (e.g., access to hardware) are

allowed only at a higher privilege level
– Some “blocking” system calls cause the process to be

blocked and descheduled (e.g., read from disk)

2



So, should we rewrite programs for
each OS?

• POSIX API: a standard set of system calls that an OS
must implement
– Programs written to the POSIX API can run on any POSIX

compliant OS
– Most modern OSes are POSIX compliant
– Ensures program portability

• Program language libraries hide the details of invoking
system calls
– The printf function in the C library calls the write system

call to write to screen
– User programs usually do not need to worry about

invoking system calls

• POSIX API: a standard set of system calls that an OS
must implement
– Programs written to the POSIX API can run on any POSIX

compliant OS
– Most modern OSes are POSIX compliant
– Ensures program portability

• Program language libraries hide the details of invoking
system calls
– The printf function in the C library calls the write system

call to write to screen
– User programs usually do not need to worry about

invoking system calls

3



Process related system calls (in Unix)

• fork() creates a new child process
– All processes are created by forking from a parent
– The init process is ancestor of all processes

• exec() makes a process execute a given
executable

• exit() terminates a process
• wait() causes a parent to block until child

terminates
• Many variants exist of the above system calls with

different arguments

• fork() creates a new child process
– All processes are created by forking from a parent
– The init process is ancestor of all processes

• exec() makes a process execute a given
executable

• exit() terminates a process
• wait() causes a parent to block until child

terminates
• Many variants exist of the above system calls with

different arguments

4



What happens during a fork?
• A new process is created

by making a copy of
parent’s memory image

• The new process is added
to the OS process list and
scheduled

• Parent and child start
execution just after fork
(with different return
values)

• Parent and child execute
and modify the memory
data independently

• A new process is created
by making a copy of
parent’s memory image

• The new process is added
to the OS process list and
scheduled

• Parent and child start
execution just after fork
(with different return
values)

• Parent and child execute
and modify the memory
data independently

5



6



Waiting for children to die…
• Process termination scenarios

– By calling exit() (exit is called automatically when
end of main is reached)

– OS terminates a misbehaving process
• Terminated process exists as a zombie
• When a parent calls wait(), zombie child is

cleaned up or “reaped”
• wait() blocks in parent until child terminates

(non-blocking ways to invoke wait exist)
• What if parent terminates before child? init

process adopts orphans and reaps them

• Process termination scenarios
– By calling exit() (exit is called automatically when

end of main is reached)
– OS terminates a misbehaving process

• Terminated process exists as a zombie
• When a parent calls wait(), zombie child is

cleaned up or “reaped”
• wait() blocks in parent until child terminates

(non-blocking ways to invoke wait exist)
• What if parent terminates before child? init

process adopts orphans and reaps them

7



8



What happens during exec?

• After fork, parent and child
are running same code
– Not too useful!

• A process can run exec() to
load another executable to its
memory image
– So, a child can run a different

program from parent
• Variants of exec(), e.g., to

pass commandline arguments
to new executable

• After fork, parent and child
are running same code
– Not too useful!

• A process can run exec() to
load another executable to its
memory image
– So, a child can run a different

program from parent
• Variants of exec(), e.g., to

pass commandline arguments
to new executable

9



10



Case study: How does a shell work?
• In a basic OS, the init process is created after initialization

of hardware
• The init process spawns a shell like bash
• Shell reads user command, forks a child, execs the command

executable, waits for it to finish, and reads next command
• Common commands like ls are all executables that are

simply exec’ed by the shell

prompt>ls

a.txt b.txt c.txt

• In a basic OS, the init process is created after initialization
of hardware

• The init process spawns a shell like bash
• Shell reads user command, forks a child, execs the command

executable, waits for it to finish, and reads next command
• Common commands like ls are all executables that are

simply exec’ed by the shell

prompt>ls

a.txt b.txt c.txt

11



More funky things about the shell

• Shell can manipulate the
child in strange ways

• Suppose you want to redirect
output from a command to a
file

• prompt>ls > foo.txt

• Shell spawns a child, rewires
its standard output to a file,
then calls exec on the child

• Shell can manipulate the
child in strange ways

• Suppose you want to redirect
output from a command to a
file

• prompt>ls > foo.txt

• Shell spawns a child, rewires
its standard output to a file,
then calls exec on the child

12



13


