Lecture 3: Process API

Mythili Vutukuru
IIT Bombay

What API does the OS provide to user
programs?

APl = Application Programming Interface
= functions available to write user programs

* APl provided by OS is a set of “system calls”

— System call is a function call into OS code that runs at
a higher privilege level of the CPU

— Sensitive operations (e.g., access to hardware) are
allowed only at a higher privilege level

— Some “blocking” system calls cause the process to be

B —

blocked and descheduled (e.g., r ead from disk)

So, should we rewrite programs for
each OS?

* POSIX API: a standard set of system calls that an OS
must implement

— Programs written to the POSIX APl can run on any POSIX
compliant OS

— Most modern OSes are POSIX compliant
— Ensures program portability

* Program language libraries hide the details of invoking
system calls

— The printf function in the C library calls the wr I t e system
call to write to screen

— User programs usually do not need to worry about

invoking system calls C s LJDC S%SCOM'

3

Process related system calls (in Unix)

o fork() creates anew child process
— All processes are created by forking from a parent
— Thel ni t process is ancestor of all processes

» exec() makes a process execute a given
executable

e exlt () terminates a process

 Wal t () causes a parent to block until child
terminates

e Many variants exist of the above system calls with
different arguments

What happens during a fork?

P C
A new process is created —))
by making a copy of Tock | —| £, (|
parent’s memory image - o
The new process is added % / =
] L

to the OS process list and c
|

scheduled %HD/?DHU

Parent and child start
execution just after fork
(with different return
values)

Parent and child execute
and modify the memory
data independently

{
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if {(rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");

exit (1) ; "
} else if (rc == 0) { // child (new process))\
)

1 #include <stdio.h>

2 $include <stdlib.h> j>

3 #include <unistd.h> YC 7 TC
4

5 int

6 main({int argc, char xargv[]) @\-(?

7

]

9

e e e e
= W b = =

printf ("helleo, 1 am child (pid:%d)\n", (int) getpid());

15 f elge | // parent goes down this path (main):

16 printf ("hello, I am parent of %d (pid:%d)\n",]
17 e, (1it) getpid()); W>

18 }

[y
o

return 0;

[
=

Figure 5.1: Calling fork () (pl.c)

When you run this program (called p1. c), you'll see the following:

AN

prompt> ./pl
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
\\L hello, I am child (pid:29147)
prompt> 6

Waiting for children to die...

Process t

ermination scenarios

— By callingexi t () (exitis called automatically when
end of main is reached)

— OS terminates a misbehaving process D R
Terminated process exists as a zombie R 4
When a parent calls wal t () , zombie child is

cleaned u
wai t ()
(non-bloc

0 or “reaped”

blocks in parent until child terminates
King ways to invoke wait exist)

What if parent terminates before child? 1 ni t
process adopts orphans and reaps them

\/K/%

L R o e = T) B e I

=t el el el e
e W R =

15
16
17
18
19
20
21

$include <stdio.h>
$include <stdlib.h>
finclude <unistd.h>
#include <sys/wait.h>

int

main (int argc, char xargv[])

{

printf ("hello world (pid:%d)\n", (int) getpid());
int rc = forkl();

1€ fre =< 0) 14 // fork failed; exit

fprintf (stderr, "fork failedkn");

exit (1) ;
} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());
} else { // parent goes down this path (main)

int we = wait (NULL) ;
printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, {(int) getpid());

}

return 0;

Figure 5.2: Calling fork () Andwait () (p2.c)

What happens during exec?

P C exec
e After fork, parent and child
are running same code / new
— Not too useful!] @ Code
e A processcanrunexec() to Ao

load another executable to its
memory image

— So, a child can run a different
program from parent
e Variants of exec(), e.g., to
pass commandline arguments
to new executable

ot =] 3 i Wi L Rd e

B herhaeabRBREEoeResnhraRh =8

#include <stdic.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int

main{int argc, char =argv[])

[

printf("hello world (pid:%d)\n"™, (int) getpid{())};

int rc = fork();

if {re-< 0) { /4 fork fFailed; exit
fprintf (stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)

printf{"helle, I am child (pid:%d)\n", (int) getpid());
char *~myargs[3];

myargs [0] = strdup("wc"); // program: "wc" (word count)
myargs[l] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array

execvp (myargs[0], myargs); // runs word count
N e’ =5
printf ("this shouldn’t print out®);
} else { // parent goes down this path (main)
int wc = wait (NULL} ;
printf{"hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}

return 0;

Figure 5.3: Calling fork (), wait (), And exec() (p3.c)

10

Case study: How does a shell work?

In a basic OS, the | ni t process is created after initialization
of hardware

The 1 ni t process spawns a shell like bash
Shell reads user command, forks a child, execs the command

-

executable, waits for it to finish, and reads next command
walits

Common commands like | s are all executables that are
simply exec’ed by the shell
SL'\ 7EOYK

oronpt >I s I]/\»/ erec (1)
a.txt b.txt c.txt Kzé

11

More funky things about the shell

Shell can manipulate the Sh

child in strange ways B — 7 &
Suppose you want to redirect

output from a command to a /}

file AN
prompt >l s > foo.txt M
Shell spawns a child, rewires S0kt

its standard output to a file,
then calls exec on the child

12

MoE =] B o ode Lo e

BENMEREEBNENEGEESRGREBRES

#include <stdic.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fentl.h>
#include <sys/wait.h>

int
main({int argec, char xargv[])

{

int re = fork();
if (re < 0) { [/ fork failed; exit
fprintf(stderr, "fork failed\n"};
exit(l);
} else if (rc == 0) { // child: redirect standard output to a file

close (3TDOUT _FILENO) ;
open("./pd.output", O CREAT|O WRONLY|Q TRUNC, S5 _IRWXU);

// now sxec "we"...

char «~myargs|3];

myargs [0] = strdup("we"); // program: "wc" (word count)
myargs[1l] = strdup("p4.c"); // argument: file te count
myargs [2] = NULL; // marks end of array
execvp (myargs[0], myargs); // runs word count

} eTse | // parent goes down this path (main)

int wo = wait (NULL) ;
}

return 0;

Figure 5.4: All Of The Above With Redirection (p4.c)

Here is the output of running the p4 . c program:

prompt> ./p4
prompt> cat_p4.output
32 105 846 pd.c

prompt>

Jlak

13

