
Lecture 32: File system 
implementation in xv6

Mythili Vutukuru
IIT Bombay

https://www.cse.iitb.ac.in/~mythili/os/



Disk layout
• Disk in xv6 is formatted to contain superblock, log (for crash recovery), 

inode blocks (multiple inodes packed per block), bitmap (indicating which 
data blocks are free), actual data blocks

• Disk inode contains block numbers of direct blocks and one indirect block 
• Directory is special file: data blocks contain directory entries, mapping file 

names of files in the directory to corresponding inode numbers
• Link count of inode = number of directory entries pointing to a file inode

2



In-memory data structures (1)
• Every open file has a struct file 

associated with it
– Pointer to inode or pipe structure

• All struct files stored in fixed size array 
called file table (ftable)

• File descriptor array of a process contains 
pointers to struct files in the file table

• Two processes P and Q open same file, 
will use two struct file entries in file table
– Points to same inode
– Read and write independently at 

different offsets
• P forks child C, both file descriptors will 

point to same struct file (ref is increased)
– Offsets are shared

• Reference count of struct file is number 
of file descriptors that point to it

3



In-memory data structures (2)
• Struct file points to in-memory inode

structure of an open file (pipe 
structure for pipes)

• In-memory inode is almost copy of 
disk inode, stored in memory for 
open files

• All in-memory inodes stored in fixed 
size array called inode cache (icache)

• Reference count of in-memory inode
is number of pointers from file table 
entries, current working directory of 
process etc.
– Different from link count
– A file is cleaned up on disk only when 

both ref count and link count are 
zero

4



Inode functions (1)

• Function ialloc() allocates free inode from disk by 
looking over disk inodes and finding a free one for a file

• Function iget() returns a reference counted pointer to 
in-memory inode in icache, to use in struct file etc
– Non-exclusive pointer, information inside inode structure 

may not be up to date
– Pointer released by iput()

• Function ilock() locks the inode for use by a process, 
and updates its information from disk if needed
– Unlocked by iunlock()

• Function iupdate() propagates changes from in-
memory inode to on-disk inode

5



Inode functions (2)

• Inode has pointers to file 
datablocks

• Function bmap returns the 
address of n-th block of file
– If direct block, read from inode
– If indirect block, read indirect 

block first and then return block 
number from it

• Function can allocate data blocks 
too: if n-th data block of file not 
present, allocates new block on 
disk, writes it to inode, and 
returns address

• Functions readi/writei are used 
to read/write file data at given 
offset, call bmap to find 
corresponding data block

6



Directory functions
• Directory lookup: read directory entries from the data blocks of directory. 

If file name matches, return pointer to inode from icache
• Linking a file to a directory: check file with the same name does not exist, 

and add the mapping from file name to inode number to directory

7



Creating a file (if it doesn’t exist)
• Locate the inode of parent 

directory by walking the 
filepath from root (lookup 
root inode, find inode
number of next element of 
pathname in inode data 
blocks, and repeat)

• Lookup filename in parent 
directory. If file already 
exists, return its inode

• If file doesn’t exist, allocate 
a new inode for it, lock it, 
initialize it

• If new file is a directory, add 
entries for “.” and “..”

• If new file is a regular file, 
link it to its parent directory

8



System call: open

• Get arguments: filename, 
mode

• Create file (if specified) and 
get a pointer to its inode

• Allocate new struct file in 
ftable, and new file 
descriptor entry in struct
proc of process pointing to 
the struct file in ftable

• Return index of new entry 
in file descriptor array of 
process

• Note the begin_op and 
end_op for transactions

9



System call: link

• Link an existing file from 
another directory with a 
new name (hard linking)

• Get pointer to file inode by 
walking the old filename

• Update link count in inode
• Get pointer to inode of 

new directory, and link old 
inode from parent 
directory in new name

10



System call: file read
• Other system calls follow same 

pattern
• For example, file read:

– Get arguments (file descriptor 
number, buffer to read into, 
number of bytes to read)

– Fetch inode pointer from struct file 
and perform read on inode (or pipe 
if file descriptor pointed to pipe)

– Function readi uses the function 
“bmap” to get the block 
corresponding to n-th byte and 
reads from it

– Offset in struct file updated

11



Summary
• On disk: inodes, data blocks, free bitmap (and log)
• In-memory: file descriptor array (points to) struct file in file 

table array (points to) in-memory inode in inode cache
• Directory is a special file, where data blocks contain 

directory entries (filenames and corresponding inode
numbers)

• System calls related to files extract arguments, perform 
various operations on in-memory and on-disk data 
structures

• Updates to disk happen via the buffer cache 
– Changes to all blocks in a system call are wrapped in a 

transaction and logged for atomicity

12


