Lecture 4: Mechanism of process
execution

Mythili Vutukuru
IIT Bombay



Low-level mechanisms

How does the OS run a process?
How does it handle a system call?

How does it context switch from one process
to the other?



Process Execution

e OSallocates memoryand (PU

creates memory image o ]

— Code and data (from exe)

— Stack and heap —
. Stacy
* Points CPU program counter op

to current instruction

— Other registers may store
operands, return values etc.
o After setup, OS is out of the
way and process executes
directly on CPU




A simple function call

A function call translates
to a jump instruction

A new stack frame

pushed to stack and 3 0). .
stack pointer (SP) :
updated

Old value of PC (return EEN
value) pushed to stack St sd pc
and PC updated O
Stack frame contains

return value, function
arguments etc.



How is a system call different?

e CPU hardware has multiple privilege levels
— One to run user code: user mode
— One to run OS code like system calls: kernel mode
— Some instructions execute only in kernel mode

 Kernel does not trust user stack
— Uses a separate kernel stack when in kernel mode

—_—

e Kernel does not trust user provided addresses to
jump to
— Kernel sets up Interrupt Descriptor Table (IDT) at boot
time -
— IDT has addresses of kernel functions to run for
system calls and other events




Mechanism of system call: trap
Instruction

e When system call must be made,

. . S )
a special trap instruction is run R

(usually hidden from user by rC d gﬁgw
libc)

* Trap instruction execution
— Move CPU to higher privilege SY (—"7 SHonck

CP S A%

level

h—/

— Switch to kernel stack \

— Save context (old PC, registers) on T
kernel stack L —

— Look up address in IDT and jump & sk

to trap handler function in OS Vo
code oS code | Conctext




More on the trap instruction

Trap instruction is executed on hardware in following
cases:

— System call (program needs OS service)

— Program fault (program does something illegal, e.g., access
memory it doesn’t have access to)

— Interrupt (external device needs attention of OS, e.g., a
network packet has arrived on network card)

Across all cases, the mechanism is: save context on
kernel stack and switch to OS address in IDT

IDT has many entries: which to use? A
— System calls/interrupts store a number in a CPU register/

before calling trap, to identify which IDT entry to use &/

K



e U
Return from trap g y

K
When OS is done handling syscall or interrupt, it

calls a special instruction return-from-trap

— Restore context of CPU registers from kernel stack

— Change CPU privilege from kernel mode to user mode
— Restore PC and jump to user code after trap

User process unaware that it was suspended,
resumes execution as always

Must you always return to the same user process
from kernel mode? No

Before returning to user mode, OS checks if it
must switch to another process




Why switch between processes?

e Sometimes when OS is in kernel mode, it cannot
return back to the same process it left

— Process has exited or must be terminated (e.g.,
segfault)

— Process has made a blocking system call

 Sometimes, the OS does not want to return back
to the same process

\L
— The process has run for too long < j
— Must timeshare CPU with other processes ~/ K

* In such cases, OS performs a context switch to
switch from one process to another




The OS scheduler

e OS scheduler has two parts
— Policy to pick which process to run (next lecture)
— Mechanism to switch to that process (this lecture)
* Non preemptive (cooperative) schedulers are
polite
— Switch only if process blocked or terminated
 Preemptive (non-cooperative) schedulers can
switch even when process is ready to continue
— CPU generates periodic timer interrupt

— After servicing interrupt, OS checks if the current ;
process has run for too long (L \\

[




Mechanism of context switch

Example: process A has moved from
user to kernel mode, OS decides it
must switch from Ato B

Save context (PC, registers, kernel stack
pointer) of A on kernel stack

Switch SP to kernel stack of B
Restore context from B’s kernel stack
Who has saved registers on B’s kernel

stack?

— 0S did, when it switched out B in the
past

Now, CPU is running B in kernel mode,

return-from-trap to switch to user

mode of B

11



A subtlety on saving context

Context (PC and other CPU registers) saved on
the kernel stack in two different scenarios

When going from user mode to kernel mode,
user context (e.g., which instruction of user code
you stopped at) is saved on kernel stack by the
trap instruction (
)

— Restored by return-from-trap
During a context switch, kernel context (e.g.,
where you stopped in the OS code) of process A

is saved on the kernel stack of A by the context
switching code A

— Restores kernel context of process B &>\<é,_>‘<

K




