
Lecture 4: Mechanism of process
execution

Lecture 4: Mechanism of process
execution

Mythili Vutukuru
IIT Bombay



Low-level mechanisms

• How does the OS run a process?
• How does it handle a system call?
• How does it context switch from one process

to the other?

• How does the OS run a process?
• How does it handle a system call?
• How does it context switch from one process

to the other?

2



Process Execution

• OS allocates memory and
creates memory image
– Code and data (from exe)
– Stack and heap

• Points CPU program counter
to current instruction
– Other registers may store

operands, return values etc.
• After setup, OS is out of the

way and process executes
directly on CPU

• OS allocates memory and
creates memory image
– Code and data (from exe)
– Stack and heap

• Points CPU program counter
to current instruction
– Other registers may store

operands, return values etc.
• After setup, OS is out of the

way and process executes
directly on CPU

3



A simple function call
• A function call translates

to a jump instruction
• A new stack frame

pushed to stack and
stack pointer (SP)
updated

• Old value of PC (return
value) pushed to stack
and PC updated

• Stack frame contains
return value, function
arguments etc.

• A function call translates
to a jump instruction

• A new stack frame
pushed to stack and
stack pointer (SP)
updated

• Old value of PC (return
value) pushed to stack
and PC updated

• Stack frame contains
return value, function
arguments etc.

4



How is a system call different?
• CPU hardware has multiple privilege levels

– One to run user code: user mode
– One to run OS code like system calls: kernel mode
– Some instructions execute only in kernel mode

• Kernel does not trust user stack
– Uses a separate kernel stack when in kernel mode

• Kernel does not trust user provided addresses to
jump to
– Kernel sets up Interrupt Descriptor Table (IDT) at boot

time
– IDT has addresses of kernel functions to run for

system calls and other events

• CPU hardware has multiple privilege levels
– One to run user code: user mode
– One to run OS code like system calls: kernel mode
– Some instructions execute only in kernel mode

• Kernel does not trust user stack
– Uses a separate kernel stack when in kernel mode

• Kernel does not trust user provided addresses to
jump to
– Kernel sets up Interrupt Descriptor Table (IDT) at boot

time
– IDT has addresses of kernel functions to run for

system calls and other events
5



Mechanism of system call: trap
instruction

• When system call must be made,
a special trap instruction is run
(usually hidden from user by
libc)

• Trap instruction execution
– Move CPU to higher privilege

level
– Switch to kernel stack
– Save context (old PC, registers) on

kernel stack
– Look up address in IDT and jump

to trap handler function in OS
code

• When system call must be made,
a special trap instruction is run
(usually hidden from user by
libc)

• Trap instruction execution
– Move CPU to higher privilege

level
– Switch to kernel stack
– Save context (old PC, registers) on

kernel stack
– Look up address in IDT and jump

to trap handler function in OS
code

6



More on the trap instruction
• Trap instruction is executed on hardware in following

cases:
– System call (program needs OS service)
– Program fault (program does something illegal, e.g., access

memory it doesn’t have access to)
– Interrupt (external device needs attention of OS, e.g., a

network packet has arrived on network card)
• Across all cases, the mechanism is: save context on

kernel stack and switch to OS address in IDT
• IDT has many entries: which to use?

– System calls/interrupts store a number in a CPU register
before calling trap, to identify which IDT entry to use

• Trap instruction is executed on hardware in following
cases:
– System call (program needs OS service)
– Program fault (program does something illegal, e.g., access

memory it doesn’t have access to)
– Interrupt (external device needs attention of OS, e.g., a

network packet has arrived on network card)
• Across all cases, the mechanism is: save context on

kernel stack and switch to OS address in IDT
• IDT has many entries: which to use?

– System calls/interrupts store a number in a CPU register
before calling trap, to identify which IDT entry to use

7



Return from trap
• When OS is done handling syscall or interrupt, it

calls a special instruction return-from-trap
– Restore context of CPU registers from kernel stack
– Change CPU privilege from kernel mode to user mode
– Restore PC and jump to user code after trap

• User process unaware that it was suspended,
resumes execution as always

• Must you always return to the same user process
from kernel mode? No

• Before returning to user mode, OS checks if it
must switch to another process

• When OS is done handling syscall or interrupt, it
calls a special instruction return-from-trap
– Restore context of CPU registers from kernel stack
– Change CPU privilege from kernel mode to user mode
– Restore PC and jump to user code after trap

• User process unaware that it was suspended,
resumes execution as always

• Must you always return to the same user process
from kernel mode? No

• Before returning to user mode, OS checks if it
must switch to another process

8



Why switch between processes?
• Sometimes when OS is in kernel mode, it cannot

return back to the same process it left
– Process has exited or must be terminated (e.g.,

segfault)
– Process has made a blocking system call

• Sometimes, the OS does not want to return back
to the same process
– The process has run for too long
– Must timeshare CPU with other processes

• In such cases, OS performs a context switch to
switch from one process to another

• Sometimes when OS is in kernel mode, it cannot
return back to the same process it left
– Process has exited or must be terminated (e.g.,

segfault)
– Process has made a blocking system call

• Sometimes, the OS does not want to return back
to the same process
– The process has run for too long
– Must timeshare CPU with other processes

• In such cases, OS performs a context switch to
switch from one process to another

9



The OS scheduler
• OS scheduler has two parts

– Policy to pick which process to run (next lecture)
– Mechanism to switch to that process (this lecture)

• Non preemptive (cooperative) schedulers are
polite
– Switch only if process blocked or terminated

• Preemptive (non-cooperative) schedulers can
switch even when process is ready to continue
– CPU generates periodic timer interrupt
– After servicing interrupt, OS checks if the current

process has run for too long

• OS scheduler has two parts
– Policy to pick which process to run (next lecture)
– Mechanism to switch to that process (this lecture)

• Non preemptive (cooperative) schedulers are
polite
– Switch only if process blocked or terminated

• Preemptive (non-cooperative) schedulers can
switch even when process is ready to continue
– CPU generates periodic timer interrupt
– After servicing interrupt, OS checks if the current

process has run for too long

10



Mechanism of context switch
• Example: process A has moved from

user to kernel mode, OS decides it
must switch from A to B

• Save context (PC, registers, kernel stack
pointer) of A on kernel stack

• Switch SP to kernel stack of B
• Restore context from B’s kernel stack
• Who has saved registers on B’s kernel

stack?
– OS did, when it switched out B in the

past
• Now, CPU is running B in kernel mode,

return-from-trap to switch to user
mode of B

• Example: process A has moved from
user to kernel mode, OS decides it
must switch from A to B

• Save context (PC, registers, kernel stack
pointer) of A on kernel stack

• Switch SP to kernel stack of B
• Restore context from B’s kernel stack
• Who has saved registers on B’s kernel

stack?
– OS did, when it switched out B in the

past
• Now, CPU is running B in kernel mode,

return-from-trap to switch to user
mode of B

11



A subtlety on saving context
• Context (PC and other CPU registers) saved on

the kernel stack in two different scenarios
• When going from user mode to kernel mode,

user context (e.g., which instruction of user code
you stopped at) is saved on kernel stack by the
trap instruction
– Restored by return-from-trap

• During a context switch, kernel context (e.g.,
where you stopped in the OS code) of process A
is saved on the kernel stack of A by the context
switching code
– Restores kernel context of process B

• Context (PC and other CPU registers) saved on
the kernel stack in two different scenarios

• When going from user mode to kernel mode,
user context (e.g., which instruction of user code
you stopped at) is saved on kernel stack by the
trap instruction
– Restored by return-from-trap

• During a context switch, kernel context (e.g.,
where you stopped in the OS code) of process A
is saved on the kernel stack of A by the context
switching code
– Restores kernel context of process B

12


