Lecture 7: Introduction to virtual
memory

Mythili Vutukuru
IIT Bombay



Why virtualize memory?

Because real view of OKB _
memory is messy! Opersig Sysem |/
. 64KB
Earlier, memory had only (free)
code of one running process 1288 Gim . |
(and OS code) oo | (c00% data. eto)
Now, multiple active e e i [V
processes timeshare CPU e 7
eeg
— Memory of many processes  32ks
must be in memory ot dos aiy |
— Non-contiguous too e 77
Need to hide this complexity a4s«s
from user o
512KB

Figure 13.2: Three Processes: Sharing Memory



Abstraction: (Virtual) Address Space

e Virtual address space: every g
process assumes it has access 1
to a large space of memory
from address 0 to a MAX i

e Contains program code (and
static data), heap (dynamic
allocations), and stack (used
during function calls)

e Stack and heap grow
during runtime

e CPU issues loads and stores
to virtual addresses
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e Translation done by memory

How is actual memory reached?
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Example: Paging

OS divides virtual address space

into fixed size pages, physical

memory into frames

To allocate memory, a page is

mapped to a free physical frame

reserved for OS

page ffame 0

_Page table stores mappings from
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virtual page number to physical

page 3 of AS

frame number for a process (e.g,

page 0 of AS

page O to frame 3)
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MMU has access to page tables,

page 2 of AS

page frame 5

and uses it to translate VA to PA

page frame 6

page frame 7




Goals of memory virtualization

* Transparency: user programs should not be
aware of the messy details

e Efficiency: minimize overhead and wastage in
terms of memory space and access time

e |solation and protection: a user process
should not be able to access anything outside
its address space




How can a user allocate memory?
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Memory allocation system calls

 mal | oc implemented by C

library

— Algorithms for efficient memory
allocation and free space
management

 To grow heap, libc uses the
_brk/ sbrk system call

A program can also allocate a
page sized memory using the
‘mmap( ) system call

— Gets “anonymous” page from OS
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A subtle point: what is the address

space of the

OS is not a separate
process with its own
address space

Instead, OS code is part of
the address space of every
process

A process sees OS as part
of its code (e.g., library)

Page tables map the OS
addresses to OS code
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How does the OS allocate memory?

 OS needs memory for its data structures
e For large allocations, OS allocates a page

 For smaller allocations, OS uses various
memory allocation algorithms (more later)
— Cannot use libc and mal | oc in kernel!



