Lecture 7: Introduction to virtual
memory

Mythili Vutukuru
IIT Bombay

Why virtualize memory?

Because real view of OKB _
memory is messy! Opersig Sysem |/
. 64KB
Earlier, memory had only (free)
code of one running process 1288 Gim . |
(and OS code) oo | (c00% data. eto)
Now, multiple active e e i [V
processes timeshare CPU e 7
eeg
— Memory of many processes 32ks
must be in memory ot dos aiy |
— Non-contiguous too e 77
Need to hide this complexity a4s«s
from user o
512KB

Figure 13.2: Three Processes: Sharing Memory

Abstraction: (Virtual) Address Space

e Virtual address space: every g
process assumes it has access 1
to a large space of memory
from address 0 to a MAX i

e Contains program code (and
static data), heap (dynamic
allocations), and stack (used
during function calls)

e Stack and heap grow
during runtime

e CPU issues loads and stores
to virtual addresses
/___—_‘d

KB

16KB

15KB |

r Program Gode

11 ,"”

Heap

(free)

Stack

the code segment:
where instructions live

the heap segment:
contains malloc'd data
dynamic data structures

(it grows downward)

(it grows upward)
the stack segment:
contains local variables
arguments fo routines,
return values, etc.

Figure 13.3: An Example Address Space

3

e Translation done by memory

How is actual memory reached?

0KB

Address translation from
virtual addresses (VA) to o

physical addresses (PA) e

— CPU issues loads/stores to VA zsexe

64KB

but memory hardware 320KB
/

accesses PA

384KB
~——

OS allocates memory and ke
tracks location of processes s

hardware called Memory
Management Unit (MMU)

— OS makes the necessary
information available

Operating System

(code, data, etc.)

VA

(free)

[Program Code

Process C
(code, data, etc.)

Heap

Process B
(code. data, etc.)

(free)
N,

Process A
code, data, eftc.
PRLLI SIS,

(free)

(free)

|

(free)

|

Stack

4

-@\

00\

FP =

—
MM

5 MeM

Example: Paging

OS divides virtual address space

into fixed size pages, physical

memory into frames

To allocate memory, a page is

mapped to a free physical frame

reserved for OS

page ffame 0

_Page table stores mappings from

{unused}/

virtual page number to physical

page 3 of AS

frame number for a process (e.g,

page 0 of AS

page O to frame 3)

{unusedW

MMU has access to page tables,

page 2 of AS

page frame 5

and uses it to translate VA to PA

page frame 6

page frame 7

Goals of memory virtualization

* Transparency: user programs should not be
aware of the messy details

e Efficiency: minimize overhead and wastage in
terms of memory space and access time

e |solation and protection: a user process
should not be able to access anything outside
its address space

How can a user allocate memory?

OKB
= Cod the code segment:
o OS a”ocates a Set Of s rcgramg_o_ea where instructions live
the heap segment:
pages to the memory e — e,
. (it grows downward)
image of the process l
e Within this image
— Static/global variables e
are allocated in the
EZ(’e,CEIQDI_e_, (it grows upward)
. the stack segment:
— Local variables of a P = Srpmenc o e
P L return values, efc.
function on stack 16KB

— Dynamic allocation with

Figure 13.3: An Example Address Space
mal | oc on the heap

Memory allocation system calls

 mal | oc implemented by C

library

— Algorithms for efficient memory
allocation and free space
management

 To grow heap, libc uses the
_brk/ sbrk system call

A program can also allocate a
page sized memory using the
‘mmap() system call

— Gets “anonymous” page from OS

Program Code

OHQ ®O

O
OO) O
00 0 o

N

brk

\J

—_—

— mmap

Stack

A subtle point: what is the address

space of the

OS is not a separate
process with its own
address space

Instead, OS code is part of
the address space of every
process

A process sees OS as part
of its code (e.g., library)

Page tables map the OS
addresses to OS code

B

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

OS?

Operating System
(code, data, etc.)

(free)

Program Code

Process C
(code, data, etc.)

Heap

Process B
(code. data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

(free)

Stack

OS

How does the OS allocate memory?

 OS needs memory for its data structures
e For large allocations, OS allocates a page

 For smaller allocations, OS uses various
memory allocation algorithms (more later)
— Cannot use libc and mal | oc in kernel!

