
Lecture 7: Introduction to virtual
memory

Lecture 7: Introduction to virtual
memory

Mythili Vutukuru
IIT Bombay



Why virtualize memory?
• Because real view of

memory is messy!
• Earlier, memory had only

code of one running process
(and OS code)

• Now, multiple active
processes timeshare CPU
– Memory of many processes

must be in memory
– Non-contiguous too

• Need to hide this complexity
from user

2

• Because real view of
memory is messy!

• Earlier, memory had only
code of one running process
(and OS code)

• Now, multiple active
processes timeshare CPU
– Memory of many processes

must be in memory
– Non-contiguous too

• Need to hide this complexity
from user



Abstraction: (Virtual) Address Space

• Virtual address space: every
process assumes it has access
to a large space of memory
from address 0 to a MAX

• Contains program code (and
static data), heap (dynamic
allocations), and stack (used
during function calls)
• Stack and heap grow

during runtime
• CPU issues loads and stores

to virtual addresses
3

• Virtual address space: every
process assumes it has access
to a large space of memory
from address 0 to a MAX

• Contains program code (and
static data), heap (dynamic
allocations), and stack (used
during function calls)
• Stack and heap grow

during runtime
• CPU issues loads and stores

to virtual addresses



How is actual memory reached?
• Address translation from

virtual addresses (VA) to
physical addresses (PA)
– CPU issues loads/stores to VA

but memory hardware
accesses PA

• OS allocates memory and
tracks location of processes

• Translation done by memory
hardware called Memory
Management Unit (MMU)
– OS makes the necessary

information available

• Address translation from
virtual addresses (VA) to
physical addresses (PA)
– CPU issues loads/stores to VA

but memory hardware
accesses PA

• OS allocates memory and
tracks location of processes

• Translation done by memory
hardware called Memory
Management Unit (MMU)
– OS makes the necessary

information available
4



Example: Paging

• OS divides virtual address space
into fixed size pages, physical
memory into frames

• To allocate memory, a page is
mapped to a free physical frame

• Page table stores mappings from
virtual page number to physical
frame number for a process (e.g,
page 0 to frame 3)

• MMU has access to page tables,
and uses it to translate VA to PA

• OS divides virtual address space
into fixed size pages, physical
memory into frames

• To allocate memory, a page is
mapped to a free physical frame

• Page table stores mappings from
virtual page number to physical
frame number for a process (e.g,
page 0 to frame 3)

• MMU has access to page tables,
and uses it to translate VA to PA

5



Goals of memory virtualization

• Transparency: user programs should not be
aware of the messy details

• Efficiency: minimize overhead and wastage in
terms of memory space and access time

• Isolation and protection: a user process
should not be able to access anything outside
its address space

• Transparency: user programs should not be
aware of the messy details

• Efficiency: minimize overhead and wastage in
terms of memory space and access time

• Isolation and protection: a user process
should not be able to access anything outside
its address space

6



How can a user allocate memory?

• OS allocates a set of
pages to the memory
image of the process

• Within this image
– Static/global variables

are allocated in the
executable

– Local variables of a
function on stack

– Dynamic allocation with
malloc on the heap

• OS allocates a set of
pages to the memory
image of the process

• Within this image
– Static/global variables

are allocated in the
executable

– Local variables of a
function on stack

– Dynamic allocation with
malloc on the heap

7



Memory allocation system calls
• malloc implemented by C

library
– Algorithms for efficient memory

allocation and free space
management

• To grow heap, libc uses the
brk/sbrk system call

• A program can also allocate a
page sized memory using the
mmap()system call
– Gets “anonymous” page from OS

brk

• malloc implemented by C
library
– Algorithms for efficient memory

allocation and free space
management

• To grow heap, libc uses the
brk/sbrk system call

• A program can also allocate a
page sized memory using the
mmap()system call
– Gets “anonymous” page from OS

8

mmap



A subtle point: what is the address
space of the OS?

• OS is not a separate
process with its own
address space

• Instead, OS code is part of
the address space of every
process

• A process sees OS as part
of its code (e.g., library)

• Page tables map the OS
addresses to OS code

• OS is not a separate
process with its own
address space

• Instead, OS code is part of
the address space of every
process

• A process sees OS as part
of its code (e.g., library)

• Page tables map the OS
addresses to OS code

9

OS



How does the OS allocate memory?

• OS needs memory for its data structures
• For large allocations, OS allocates a page
• For smaller allocations, OS uses various

memory allocation algorithms (more later)
– Cannot use libc and malloc in kernel!

• OS needs memory for its data structures
• For large allocations, OS allocates a page
• For smaller allocations, OS uses various

memory allocation algorithms (more later)
– Cannot use libc and malloc in kernel!

10


