Lecture 8: Mechanism of Address
Translation

Mythili Vutukuru
IIT Bombay

A simple example
 Consider a simple C
function
void func() {
int x = SODO;éy
x= ¥ + 3;
e |tis compiled as follows
128: movl 0x0 (%ebx), %eax ; load 0O4ebx into eax
132: addl $0x03, %eax ;add 3 to eax register
_EEEJ movl]l Zeax, 0x0 (%ebx) ; store eax back to mem
* Virtual address space is
setup by OS during

Process creation

OKB oo [rmovr oo abE), HaEr
132| a0 03, e
135 mov| o, beli¥ahn)
1KB
Program Cod
2KB
3KB Heap
4KB l
(frea)
14KB l
15KB Q%)
Stack
16KB

Address Translation

OKB

e Simplified OS: places 16K

Operating System

entire memory image in (notn use
one chunk 328 =
\LO I

 Need the following
translation from VA to PA

— 128 t0 32896 (32KB + 128) cis

— 1KB to 33 KB_
— 20KB? Error!

(allocated but not in use)

Stack

(not in use)

Relocated Process

OKBE |

k| vl Dxy b, Raax
iz | acd 0x03, Yuamx
35| movl Faa, Gelyabn)
KB
Program Cod
2
3KB Heap
4KB l
ifrea)
141 l
15KEB\ |3oo0
Stack
16KE
L.

Who performs address translation?

e |n this simple example, OS tells the hardware
the base (starting address) and bound (total
size of process) values

e Memory hardware Memory Management
Unit (MMU) calculates PA from VA

physical address = virtual address + base

e MMU also checks if address is beyond bound
e OSis notinvolved in every translation

Role of hardware in translation

CPU provides privileged mode of execution

Instruction set has privileged instructions to
set translation information (e.g., base, bound)

Hardware (MMU) uses this information to
perform translation on every memory access

MMU generates faults and traps to OS when
access is illegal (e.g., VA is out of bound)

Role of OS in translation

OS maintains free list of memory

Allocates space to process during creation (and
when asked) and cleans up when done

Maintains information of where space is allocated
to each process (in PCB)

Sets address translation information (e.g., base &
bound) in hardware

Updates this information upon context switch
Handles traps due to illegal memory access

Segmentation

Generalized base and bounds oxs

Each segment of memory
image placed separately 16KB

Multiple (base, bound) values
stored in MMU -

Good for sparse address spaces
But variable sized allocation 16KE

leads to external fragmentation

— Small holes in memory left
between segments

64KB

OKB

Operating System

(not in use)

T
Stack

(Qtin use)

(not in use)

|

Program Coda

Heap

Stack

