Lecture 9: Paging

Mythili Vutukuru
IIT Bombay

Paging

e Allocate memory in fixed size chunks (“pages”)
e Avoids external fragmentation (no small “holes”)

e Has internal fragmentation (partially filled pages)

16

32

48

64

80

96

112

128

reserved for OS

(unused)

page 3 of AS

page 0 of AS

(unused)

page 2 of AS

(unused)

page 1 of AS

page frame 0 of physical memory

page frame 1 0

page frame 2

page frame 7

(page 0 of the address space)

—

(page 1)

(page 2)

(page 3)

Page table

Per process data structure to
help VA-PA translation

Array stores mappings from

virtual page number (MPN) to
physical frame number (PFN)

— E.g.,VPO—>PF3,VP1 > PF7
Part of OS memory (in PCB)

MMU has access to page table
and uses it for address
translation

OS updates page table upon
context switch

0

16

32

48

64

80

96

112

128

page table:

37kR)

(unused)

page 3/0f AS

page}of AS =

(unused)

page}of AS

(unused)

page)/ﬂf AS

page frame 0
page frame 1
page frame 2
page frame 3
page frame 4
page frame 5
page frame 6

page frame 7

Page table entry (PTE)

Simplest page table: linear page table

Page table is an array of page table entries, one
per virtual page

VPN (virtual page no.) is index into this array
Each PTE contains PFN (physical frame number)
and few other bits

— Valid bit: is this page used by process?
— Protection bits: read/write permissions
— Present bit: is this page in memory? (more later)

— Dirty bit: has this page been modified?

— Accessed bit: has this page been recently accessed?

Address translation in hardware

* Most significant bits of Q,pN) @
VA give the VPN N e ' — \MZ}
e Page table maps VPN to ks]
PFN P
 PAis obtained from PFN Tmﬂéﬁzﬁin
and offset within a page
e MMU stores (physical) | AR N N
address of start of page adee AIESRARIENEINY
table, not all entries. PEN e m\

e “Walks” the page table
to get relevant PTE

What happens on memory access?

 CPU requests code or data at a virtual address

e MMU must translate VA to PA
— First, access memory to read page table entry
— Translate VA to PA
— Then, access memory to fetch code/data

 Paging adds overhead to memory access
e Solution? A cache for VA-PA mappings

Translation Lookaside Buffer (TLB)

* A cache of recent VA-PA mappings
e To translate VA to PA, MMU first looks up TLB
e |If TLB hit, PA can be directly used

e |[f TLB miss, then MMU performs additional
memory accesses to “walk” page table

* TLB misses are expensive (multiple memory
accesses)
— Locality of reference helps to have high hit rate

 TLB entries may become invalid on context
switch and change of page tables

How are page tables stored in memory?

 What is typical size of page table?
— 32 bit VA, 4 KB pages, so 2*32 / 2212 = 220 entries
— If each PTE is 4 bytes, then page table is 4MB
— One such page table per process!

e How to reduce the size of page tables?
— Larger pages, so fewer entries

e How does OS allocate memory for such large

tables?
— Page table is itself split into smaller chunks!

8

Multilevel page tables (1)

A page table is spread over many pages

* An “outer” page table or page directory tracks
the PFNs of the page table pages

Linear Page Table Multi-level Page Table
PTER| 201 | PDER | 200 |
gy sk mes.

2 B = = e

-'-'E =y -(E .E =

> a PFN > PEN > a PFN

1] n 12 s] 201 — [12 i

1] m 13 & & |0 - 1] 13 &

0| - : T = |0 - 0| - : £

1] rw 100 - 1 204 — 1] w 100

g - - g The Page Directory

0 z [Page 1 of PT: Not Allocated]
B LL

I:} ~ o

| = o

e - [Page 2 of PT: Not Allocated]
= LL

E} - o

0] - E —— [0] - &

e : & 0| - - &

1] rw 86 T 1] w 86 E

1] rw 15 % 1] w 15

Multilevel page tables (2)

Depending on how large the page table is, we may
need more than 2 levels also

— 64-bit architectures may need 7 levels
What about address translation?

— First few bits of VA to identify outer page table entry

— Next few bits to index into next level of PTEs
VPN offset

18| 2|1 | & & | 7T |6 | & &£ 3F 2|1 0

IF"a{_:le Direlctor'},r Index " W |
In case of TLB miss, multiple accesses to memory

required to access all the levels of page tables

