
Mythili Vutukuru
CSE, IIT Bombay

Condition Variables



Wait and signal mechanisms for threads

• Locks allow one type of synchronization between threads – mutual 
exclusion when accessing critical sections

• Another common requirement in multi-threaded applications –
waiting for events and signaling when event occurs

• E.g., Thread T2 wants to run only after T1 has finished some task (T1T2)

• Naive solution: T2 keeps checking periodically if T1 is done
• Wastes CPU cycles, inefficient
• Need a new synchronization primitive to wait for an event

2



Condition variables
• Pthread library provides special variables called condition variables (CV)

• A thread calls wait function on a CV, it is blocked and gets added to a list of 
threads waiting on that CV

• Another thread calls signal on a CV, one of the waiting threads gets ready to run 
again, will be scheduled in the future (no immediate context switch)

• Example: we want T2 to run only after T1 does its work (T1T2)
• T1 does its work and calls signal
• T2 checks if work is done, and calls wait if work is not done

//do work
done = true
signal(cv)

T1

if(!done) wait(cv)
(T2 blocks)

(T2 resumes)

T2
//do work
done = true
signal(cv)

T1

if(!done) wait(cv)
//proceed, no wait

T2



Atomicity in wait and signal (1)
• Checking condition and waiting must be atomic, deadlock otherwise

• Thread T2 checks condition is false, context switch just before blocking
• Meanwhile T1 makes condition true, calls signal. But signal doesn’t wake up 

anyone (none sleeping yet)
• T2 resumes, goes to sleep forever (no one will signal again)

• This is called missed wakeup problem: how to fix?

//do work
done = true
signal(cv)

T1

if(!done)
(context switch) 

wait(cv)

T2



Atomicity in wait and signal (2)
• Solution: use a lock/mutex to protect atomicity of sleeping

• T2 holds a lock, checks condition, calls wait
• Lock released only after T2 is added to list of waiting processes (ensures 

atomicity of checking condition and sleeping)
• T1 acquires same lock before calling signal, ensuring that signal cannot 

happen in between checking condition and waiting
• Pthread CV implementation releases lock during wait, reacquires on wakeup

//do work
done = true
signal(cv)

T1

if(!done)
(context switch) 

wait(cv)

T2

lock(mutex)
done = true
signal(cv)
unlock(mutex)

T1

lock(mutex)
if(!done)

wait(cv, mutex)

unlock(mutex)

T2



Guidelines for using condition variables
• Use the same lock for wait and signal (maybe for other variables too)
• Before calling wait, confirm that the condition is indeed false

• T2 must check “done” variable before calling wait (what if T1 has already run?)

• Signal broadcast wakes up all threads while signal wakes up any one
• Good habit to check condition with “while” loop and not “if”

• To avoid corner cases of thread being woken up even when condition not true 
(may be an issue with some implementations)

6



Example: Producer-consumer problem 
• Producer and consumer threads, sharing data via a buffer of bounded size

• Producers produce items, add into a shared buffer
• Consumers consume item from shared buffer

• What kind of coordination is needed between threads?
• Producer thread produces and places items into buffer, waits if the buffer is full 

Consumer signals after making space in the buffer
• Consumer thread consumes items from buffer, waits if the buffer is empty 

Producer signals after producing items

ConsumerProducer



Example: Multi-threaded server

• Master thread accepts requests and puts them in a queue
• Worker threads fetch requests from this queue and process them

Master
thread Buffer

...Accept
connections

Insert
descriptors Remove

descriptors

Worker
thread

Worker
thread

Client

Client

...

Service client

Service client

Pool of worker threads

Image credit: CSAPP



Example: Producer-consumer problem
• Solution using condition variables

• Mutex/lock used while modifying shared buffer
• Two CVs: one for producers to wait, and one for consumers to wait

//Producer
lock(mutex)
if(no free space in buffer)

wait(cv_producer, mutex)
produce item, add to buffer
signal(cv_consumer)
unlock(mutex)

//Producer
lock(mutex)
if(no free space in buffer)

wait(cv_producer, mutex)
produce item, add to buffer
signal(cv_consumer)
unlock(mutex)

//Consumer
lock(mutex)
if(no items in buffer)

wait(cv_consumer, mutex)
consume item from buffer
signal(cv_producer)
unlock(mutex)

//Consumer
lock(mutex)
if(no items in buffer)

wait(cv_consumer, mutex)
consume item from buffer
signal(cv_producer)
unlock(mutex)



Producer/Consumer with 2 CVs

10Image credit: OSTEP



Example: Batched processing

• Example scenario: two kinds of threads in an application
• Request threads, each containing an application request
• Batch processor thread processes N requests at a time in a batch

• What kind of synchronization do we need?
• Batch processing thread must wait until N requests arrive, then start batch
• Request thread must wait until batch starts, then get processed and finish

• Example: suppose Covid-19 vaccination vial has 10 doses. Nurse waits 
for 10 patients to arrive, then opens the vial and vaccinates all 10



Example: Batched processing

• Solution using two CVs: one for requests to wait, one for batch 
processor to wait

• Other integer and Boolean variables, mutex/lock for atomicity

//Request thread
lock(mutex)
count++
if(count == N)

signal(cv_batch_processor)
while(not batch_started)

wait(cv_request, mutex)
unlock(mutex)

//Request thread
lock(mutex)
count++
if(count == N)

signal(cv_batch_processor)
while(not batch_started)

wait(cv_request, mutex)
unlock(mutex)

//Batch processor thread
lock(mutex)
while(count < N)

wait(cv_batch_processor, mutex)
batch_started = true
signal_broadcast(cv_request)
unlock(mutex)

//Batch processor thread
lock(mutex)
while(count < N)

wait(cv_batch_processor, mutex)
batch_started = true
signal_broadcast(cv_request)
unlock(mutex)



Example: Batched processing
• What is wrong with this solution?

• Nth request thread calls wait before invoking signal to wake up batch processor
• Batch processor never wakes up, all threads will sleep forever
• Before you sleep, ensure that the signaling code can run in future

//Request thread
lock(mutex)
count++
while(not batch_started)

wait(cv_request, mutex)
if(count == N)

signal(cv_batch_processor)
unlock(mutex)

//Request thread
lock(mutex)
count++
while(not batch_started)

wait(cv_request, mutex)
if(count == N)

signal(cv_batch_processor)
unlock(mutex)

//Batch processor thread
lock(mutex)
while(count < N)

wait(cv_batch_processor, mutex)
batch_started = true
signal_broadcast(cv_request)
unlock(mutex)

//Batch processor thread
lock(mutex)
while(count < N)

wait(cv_batch_processor, mutex)
batch_started = true
signal_broadcast(cv_request)
unlock(mutex)



Synchronization patterns using CVs
• Many examples in the practice problems

• Scenario describing multiple threads/entities and how they should interact 
and coordinate with each other

• Toy examples modelled after real world application design patterns

• How to write code with correct synchronization
• Identify when each entity should wait and write the suitable waiting code
• For each wait, figure out how the signaling will happen and write the code
• Ensure that signaling path in the code is not blocked in any way, e.g., signal 

others first before calling wait and going to sleep
• Update all extra variables (counts, flags) in the solution correctly
• Run through your code in a few different scenarios and different order of 

execution of threads to convince yourself that it works correctly



Watch out for deadlocks
• Deadlock: threads are stuck in blocked state without making progress
• Example: thread sleeps by calling wait on CV, no other thread calls 

signal, so thread sleeps forever
• Example: circular wait when acquiring multiple locks

• T1 acquires LockA and LockB, T2 acquires LockB and LockA
• T1 acquires LockA, T2 acquires LockB, each is waiting for second lock
• Deadlock if executions interleave in some ways

• Techniques to avoid deadlocks
• Acquire locks in same order across all threads of process
• When sleeping, ensure someone will wake you up!

LockA
LockB

T1

LockB
LockA

T2

LockA

LockB??

T1 LockB

LockA??

T2


