
Mythili Vutukuru
CSE, IIT Bombay

File systems



File System Data Structures: Index node 
(inode)
• Files are variable sized, split into fixed size blocks, stored non-contiguously

• Much like how memory image of process is split into fixed size pages
• Fixed size blocks avoids external fragmentation of disk storage

• For every file, index node (inode) keeps track of all the block numbers 
(locations on disk) where the file data is stored

• Equivalent to a page table which keeps track of physical frame numbers

• Inode of a file is also stored in disk blocks
• Much like how page table is stored in one or more pages hierarchically

• Inode stores all metadata about file (size, permissions, time of last 
access/modification, disk block numbers of file data, ..)



Example: a simple file system

• Data blocks: file data stored in one or more blocks
• Metadata about every file stored in inode

• Location of data blocks of a file, permissions etc.

• Inode blocks: each block has one or more inodes
• Bitmaps (or free lists): indicate which inodes/data blocks are free
• Superblock: holds master plan of all other blocks (which are inodes, 

which are data blocks etc.)
• Structure imposed when hard disk is “formatted” with a file system

3
Image credit: OSTEP



Inode on disk
• Usually, inodes (index nodes) stored in array contiguously on disk

• Inode number of a file is index into this array, uniquely identifies file

• What does inode store?
• File metadata: permissions, access time, etc.
• Pointers (disk block numbers) of file data

4Image credit: OSTEP



Structure of inode
• Inode stores block numbers hierarchically

• Inode contains the block numbers of first few blocks of a file (direct blocks)
• If direct blocks are full, inode contains block number of single indirect block, 

which contains block numbers of next few blocks of a file
• If single indirect block is full, inode contains block number of double indirect 

block, which contains block numbers of more single indirect blocks
• Triple indirect block can also be used for large files

• Not a symmetric hierarchical structure like page table
• Most files are small, so first few block numbers of a file are made available 

easily without accessing multiple levels of inode

• Accessing a file from disk may require multiple disk accesses for inode



Limitations on file size

• Filesystem metadata imposes limits on maximum size of file that can be 
stored on filesystem, maximum number of files, maximum disk size that 
can be managed, and so on..

• Example: limit on file size imposed by inode structure
• Suppose inode can store K direct blocks, one single, double, triple indirect block 

each
• Suppose single indirect block can store N block numbers, double indirect block 

can store block numbers of N single indirect blocks, triple indirect block can store 
block numbers of N double indirect blocks

• Maximum file size = K + N + N^2 + N^3 blocks

• Different file systems differ in these limits



Directories
• Directory is also a special kind of file in Linux-like operating systems
• File type in inode identifies if regular file or “directory” file
• Directory is a “file” which contains special data: names of files or sub-

directories located within it, and their inode numbers
• Data blocks of directory store these mappings between file names and inode

numbers of the file
• Inode of directory keeps track of the data blocks of directory

• How are filenameinode number mappings stored in directory data 
blocks?



Directory structure
• Directory stores records mapping filename to inode number

• Fixed size records in arrays, linked list of records, or more complex 
structures (hash tables, binary search trees etc.)

• How to lookup a file inode number in a directory?
• Fetch inode of directory, locate its data blocks, read data blocks
• Search for filename in data blocks of directory (traverse array/linked list/binary 

search tree) and retrieve inode number of file

8Image credit: OSTEP



Pathnames

• File identified in filesystem by its pathname: series of directories, 
starting at root dir, leading to a file in the root filesystem

• When we want to open/read/write file, we need to find its inode
number (from which we can retrieve file data) using pathname

• Given a pathname of file, how to locate its inode number?
• Start with root directory inode (well known)
• For every element (directory) in pathname, read directory data blocks, lookup 

next element filename in directory, retrieve inode number of next element
• Repeat above process recursively, until entire path name is traversed and we 

find inode number of the desired file in its parent directory



Opening a file
• Why open a file before using it? To have the inode readily available (in 

memory) for future operations on file
• Open returns file descriptor which points to in-memory inode
• Reads and writes can access file data from inode

• What happens during open? 
• The pathname of the file is traversed, starting at root
• Inode of root is known, to bootstrap the traversal
• Recursively do: fetch inode of parent directory, read its data blocks, get inode

number of child, fetch inode of child. Repeat until end of path
• If new file, new inode and data blocks will have to be allocated using bitmap, 

and directory entry updated

10



In-memory data structures
• When a file is opened, in-memory inode is cached from on-disk copy

• Quick access of file data block numbers as long as file is in use

• Open file table: data structure used to keep track of open files
• Shared across all processes in the system
• One open file table entry created for every open system call
• Contains pointer to in-memory inode and other information about open file (e.g., 

offset at which the file is being read/written)
• Entries created on opening sockets, pipes also (point to socket/pipe info)

• File descriptor array: per-process array of open files
• Part of the PCB of a process, file descriptor number returned is index into this array
• Contains pointer to open file table entry
• Every process has three files (standard in/out/err) open by default (fd 0, 1, 2)



In-memory data structures

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table 

per process)

Open file table 
(shared by 

all processes)

in-memory i-node table
(shared by 

all processes)

File offset
refcnt=1

...
File offset
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A

File B



Open system call
• Takes file pathname and other flags as input, returns file descriptor of file

• Traverse pathname in directory tree, find inode number of file
• Create a new file if one doesn’t exist (depending on flags given to open)  allocate 

new inode, add mapping from filename to inode number in parent directory
• Copy inode of file into memory from disk (if not already present in memory)
• Create new open file table entry, with pointer to in-memory inode
• Allocate free entry in file descriptor array, store pointer to open file table entry
• Return index of newly allocated file descriptor array entry

• Every process has 3 files open by default, subsequent open files will get 
next free entries in file descriptor array

• Close system call deletes file descriptor and open file table entries

fd = open(“/home/foo/a.txt”, flags)
read(fd, ..)
write(fd, ..)
close(fd)

fd = open(“/home/foo/a.txt”, flags)
read(fd, ..)
write(fd, ..)
close(fd)



More on open file table

• Every open system call creates new entry in open file table and file 
descriptor array

• Suppose same file opened by two separate “open” system calls
• Will result in separate entries in open file table, and file descriptor array, 

because offset of reading/writing can be different
• Multiple open file table entries store pointer to same inode of the file

• When parent forks child process, file descriptor array of parent is 
duplicated in child process

• Parent and child file descriptor arrays point to same open file table entries
• Offset of file reading/writing are shared between parent and child
• Usually one of them should close the file for correct operation

• Reference count used to track multiple pointers to same entry



Example: same file opened multiple times

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table 

per process)

Open file table 
(shared by 

all processes)

in-memory i-node table
(shared by 

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

File access

...

File size
File type

File A

File B



Example: file system data structures after fork

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor tables Open file table 
(shared by 

all processes)

in-memory i-node table
(shared by 

all processes)

File pos

refcnt=2

...

File pos

refcnt=2

...

Parent's table

fd 0

fd 1

fd 2

fd 3

fd 4

Child's table

File access

...

File size

File type

File access

...

File size

File type

File A

File B



Dup2 and redirection

• System call dup2 used to 
duplicate file descriptors

• One fd entry made as 
duplicate of another 
entry

• Used for I/O redirection 
by making stdin or stdout
as duplicate of a file’s file 
descriptor 

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table 

per process)

Open file table 
(shared by 

all processes)

in-memory i-node table
(shared by 

all processes)

File pos
refcnt=0

...

File pos
refcnt=2

...

File access

...

File size
File type

File access

...

File size
File type

File A

File B



Disk buffer cache
• File data that is read from hard disk is retained in memory for some time in 

the disk buffer cache = memory pages that cache recently read disk data
• Any changes to disk data is made in the cached copy of disk buffer cache 

first, then written to disk later
• Write-through cache: changes written to disk immediately (synchronous writes)
• Write-back cache: changes written to disk after some delay (asynchronous writes)
• Write-back cache has better performance, but can lose data in case of power failure

• Benefits of disk buffer cache
• Improved performance due to fewer disk accesses
• Merge changes when multiple processes modify same file data

• Most OS allocate unused physical memory to disk buffer cache
• Some applications doing their own optimizations can bypass cache



Read system call

• Input is file descriptor, user memory to read into, number of bytes to read
• Use file descriptor array index, access open file table entry, then inode
• Based on offset, identify which data block(s) of file to read using inode information
• Check if file data block(s) present in disk buffer cache

• If cache miss, device driver issues read command to hard disk, process is moved to blocked 
state, OS will context switch to another process

• When read completes, device controller will DMA the block(s) into an empty buffer in disk 
buffer cache, raises interrupt

• OS handles interrupt, marks process as ready to run, scheduler will switch to process in future
• Copy requested number of bytes from data block(s) in disk buffer cache into user-

provided memory buffer
• User code resumes, system call returns number of bytes actually read, or error

• Actual bytes may be less than requested, e.g., end of file

fd = open(“/home/foo/a.txt”)
char buf[64]
n = read(fd, buf, 64)

fd = open(“/home/foo/a.txt”)
char buf[64]
n = read(fd, buf, 64)



Write system call
• Input is file descriptor, user memory buffer containing data to be written, 

number of bytes to write
• Using file descriptor and inode, identify which data block(s) of file to write into
• If we are writing beyond end of file, file size expands, new blocks needed

• Allocate new data blocks for file on disk (update free list or bitmap)
• Add new data block numbers into file inode

• Locate data block(s) present in disk buffer cache
• If not, read data block(s) into buffer cache first

• Copy requested number of bytes from user memory buffer into data block(s) cached 
in disk buffer cache, cached block is now marked “dirty”

• Write-through cache: synchronously write to disk immediately
• Write-back cache: asynchronously update disk copy later

• User code resumes (after delay in case of sync write, immediately for async write), 
system call returns number of bytes actually written, or error



Memory mapping a file

• Alternate ways to read/write a file is via memory mapping
• mmap system call takes the file descriptor, size of data to memory map, and 

other arguments, returns the starting virtual address of mmap region
• File data is read into one or more physical memory frames, which are mapped 

at free addresses in the process virtual address space (new page table entries)
• Can access memory mapped file data like any other memory region
• With demand paging, physical frames can be assigned on-demand only when 

mmap region accessed 

• File can be memory mapped in private or shared mode
• Shared mode: changes to file are written to disk immediately, seen by others
• Private mode: changes to file are written to disk when memory unmapped

fd = open(“/home/foo/a.txt”)
char *buf = mmap(fd, size, ..)
buf[0] = …
buf[1] = …
munmap(..)

fd = open(“/home/foo/a.txt”)
char *buf = mmap(fd, size, ..)
buf[0] = …
buf[1] = …
munmap(..)



mmap vs. read/write syscalls

• mmap can be used for file-backed as well as anonymous pages
• Physical frame mapped into address space can be empty frame or with file data

• Memory mapping a file is an easy way to read file data
• Executable code, shared library code are memory mapped into virtual address space

• Memory mapping a file avoids extra data copies
• Read system call reads data first into kernel memory, then copy into user buffer
• Memory mapping a file copies file data into free physical frames, which are directly 

accessed by user using virtual addresses

• Memory mapping allows reading disk data in large page-sized chunks
• Useful when reading/writing large amounts of data from file
• Not very efficient when reading files in small chunks



Crash consistency

• Every system call updates multiple disk blocks 
• Example: when we append data to a file, we change data block, inode block, bitmap, ..

• All changes to disk blocks are first made in memory (disk buffer cache), then 
written to disk (synchronously or asynchronously)

• Even metadata blocks (inode) are updated first in disk buffer cache

• If power failure happens in the middle of a system call, memory changes will be 
lost, disk can be only partially updated, may cause inconsistency in file data

• Example: new data block written to disk, but not added to inode (written data is lost)
• Example: new data block number added to inode, but data block contents not written (file 

contains garbage data)

• Crash consistency: how to ensure filesystem is consistent after a power failure?
• Problem exists even with write-through disk buffer cache, but more prominent with write-

back cache



File system checkers

• Programming tip for crash consistency: always update data blocks on disk first 
before updating metadata blocks

• Better to write data block and not link from inode (lost data), rather than link from inode first 
and fail to update data block (garbage in file)

• Even with above tip, inconsistency can still occur, especially when multiple 
metadata blocks need to be updated

• Example: bitmap updated to mark data block as used, inode updated to add pointer to data 
block, which metadata change to write to disk first? 

• File system checking tools (e.g., fsck) check inconsistencies in metadata blocks 
after reboot and fix the blocks to make them consistent

• Example: data block marked as used in bitmap, but not present in any inode, so mark as free
• What we want: atomicity (all changes pertaining to a system call happen all at once 

together or none happens at all)



Logging / journaling

• Logging/journaling: common technique for atomicity in systems
• Can be applied to guarantee crash consistency in file systems also

• How to add logging to any file system?
• All changes to be made to disk blocks are first written to a log on disk, original 

disk blocks are not touched
• After all changes are logged to disk, special commit entry written to log
• Next, changes are applied to the original disk blocks, log entries cleared
• If crash happens before log is committed, then no changes are made to any 

disk block, it is as if system call never happened
• If crash happens after log is committed, but before changes applied to original 

disk blocks, then log is replayed upon reboot and changes are completed



Virtual File System (VFS)

• Different file systems can have different implementations of system calls
• A file system using logging/journaling may write to log first
• A different directory implementation (fixed size records vs linked list) will lead to a 

different lookup function
• How to write filesystem code in a modular manner?

• Should be easy to change system call implementations and switch filesystems
• Solution: Virtual File System (VFS)

• Defines a set of objects (files, directories, inodes) and operations to be performed on 
these objects (open a file, lookup filename in directory, ..) for various system calls

• A specific filesystem implements these functions on VFS objects, provides pointers to 
the functions to be invoked by OS

• OS filesystem code is built in layers for modularity: VFS, filesystem 
implementation, disk buffer cache, device driver


