File systems

Mythili Vutukuru
CSE, IIT Bombay

File System Data Structures: Index node
(inode)

* Files are variable sized, split into fixed size blocks, stored non-contiguously

* Much like how memory image of process is split into fixed size pages
* Fixed size blocks avoids external fragmentation of disk storage

* For every file, index node (inode) keeps track of all the block numbers
(locations on disk) where the file data is stored
* Equivalent to a page table which keeps track of physical frame numbers

* Inode of a file is also stored in disk blocks
* Much like how page table is stored in one or more pages hierarchically

* Inode stores all metadata about file (size, permissions, time of last
access/modification, disk block numbers of file data, ..)

Example: a simple file system

~ Inodes) Data Region

IEK |D|D|D|D\D\D\D\1DS| |1E33|D|D|DID\DID\D\ \D\D\DID\D|D|D|D|
Data Region

@DTWWW [DIDIDIDIDIDIDID] [DIDID[DIDIDIDID] Wmmm
39 40 47 48 55 56

Data blocks: file data stored in one or more blocks

Metadata about every file stored in inode
* Location of data blocks of a file, permissions etc.

Inode blocks: each block has one or more inodes

Bitmaps (or free lists): indicate which inodes/data blocks are free

» Superblock: holds master plan of all other blocks (which are inodes,
which are data blocks etc.)

 Structure imposed when hard disk is “formatted” with a file system
Image credlt OSTEP

Inode on disk

* Usually, inodes (index nodes) stored in array contiguously on disk

* Inode number of a file is index into this array, uniquely identifies file

OKB 4KB 8KB

e What does inode store?

The Inode Table (Closeup)

' iblock 0 | iblock 1 | iblock2 | iblock 3 | iblock 4

12KB

16(17|18(19(32| 33|34 |35|48|49|50 | 51|64 |65 |66 |67
7 |20|21|22|23|36|37|38|39 52|53 |54 |55|68|69|70 |71

24|25/26|27 40| 41|42|43|56|57 |58|59|72| 73|74 |75

28|29/30|31|44|45|46|47 [60|61(62|63|76|77|78|79
16KB 20KB 24KB 28KB

* File metadata: permissions, access time, etc.

* Pointers (disk block numbers) of file data

Image credit: OSTEP

32KB

Structure of inode

* Inode stores block numbers hierarchically
* Inode contains the block numbers of first few blocks of a file (direct blocks)

* |f direct blocks are full, inode contains block number of single indirect block,
which contains block numbers of next few blocks of a file

* If single indirect block is full, inode contains block number of double indirect
block, which contains block numbers of more single indirect blocks

* Triple indirect block can also be used for large files

* Not a symmetric hierarchical structure like page table

* Most files are small, so first few block numbers of a file are made available
easily without accessing multiple levels of inode

* Accessing a file from disk may require multiple disk accesses for inode

Limitations on file size

* Filesystem metadata imposes limits on maximum size of file that can be

stored on filesystem, maximum number of files, maximum disk size that
can be managed, and so on..

e Example: limit on file size imposed by inode structure

* Suppose inode can store K direct blocks, one single, double, triple indirect block
each

» Suppose single indirect block can store N block numbers, double indirect block
can store block numbers of N single indirect blocks, triple indirect block can store
block numbers of N double indirect blocks

e Maximum file size = K+ N + NA2 + N3 blocks

* Different file systems differ in these limits

Directories

* Directory is also a special kind of file in Linux-like operating systems

* File type in inode identifies if regular file or “directory” file

* Directory is a “file” which contains special data: names of files or sub-
directories located within it, and their inode numbers
* Data blocks of directory store these mappings between file names and inode

numbers of the file
* Inode of directory keeps track of the data blocks of directory

* How are filename—2>inode number mappings stored in directory data
blocks?

Directory structure

* Directory stores records mapping filename to inode number

inum reclen | str | name

12

12

12

12

36

* Fixed size records in arrays, linked list of records, or more complex
structures (hash tables, binary search trees etc.)

* How to lookup a file inode number in a directory?
* Fetch inode of directory, locate its data blocks, read data blocks

* Search for filename in data blocks of directory (traverse array/linked list/binary
search tree) and retrieve inode number of file

L [
i
.
[

1=
L

{

1=

1 I S R S R |
H

by =

ba
foobar is a pretty_longname

[+
[a

Image credit: OSTEP

Pathnames

* File identified in filesystem by its pathname: series of directories,
starting at root dir, leading to a file in the root filesystem

* When we want to open/read/write file, we need to find its inode
number (from which we can retrieve file data) using pathname

* Given a pathname of file, how to locate its inode number?

 Start with root directory inode (well known)

* For every element (directory) in pathname, read directory data blocks, lookup
next element filename in directory, retrieve inode number of next element

* Repeat above process recursively, until entire path name is traversed and we
find inode number of the desired file in its parent directory

Opening a file

* Why open a file before using it? To have the inode readily available (in
memory) for future operations on file
* Open returns file descriptor which points to in-memory inode
* Reads and writes can access file data from inode

* What happens during open?
* The pathname of the file is traversed, starting at root
* Inode of root is known, to bootstrap the traversal

* Recursively do: fetch inode of parent directory, read its data blocks, get inode
number of child, fetch inode of child. Repeat until end of path

* If new file, new inode and data blocks will have to be allocated using bitmap,
and directory entry updated

In-memory data structures

 When a file is opened, in-memory inode is cached from on-disk copy
* Quick access of file data block numbers as long as file is in use

* Open file table: data structure used to keep track of open files
* Shared across all processes in the system
* One open file table entry created for every open system call

» Contains pointer to in-memory inode and other information about open file (e.g.,
offset at which the file is being read/written)

* Entries created on opening sockets, pipes also (point to socket/pipe info)

* File descriptor array: per-process array of open files
* Part of the PCB of a process, file descriptor number returned is index into this array
* Contains pointer to open file table entry
* Every process has three files (standard in/out/err) open by default (fd O, 1, 2)

In-memory data structures

Descriptor table Open file table in-memory i-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
. /" .
stdin fdo / — File access
stdout fd1 — File offset File size
stderr fd 2 .
fd3 refcnt=1 File type
fd4a ~ : :
] File access
File offset F.|Ie slzé
refcnt=1 File type

read(fd, ..)

O pe N SySte M Cd | | \CAIIQ:((:S))

» Takes file pathname and other flags as input, returns file descriptor of file
* Traverse pathname in directory tree, find inode number of file

Create a new file if one doesn’t exist (depending on flags given to open) = allocate
new inode, add mapping from filename to inode number in parent directory

Copy inode of file into memory from disk (if not already present in memory)
Create new open file table entry, with pointer to in-memory inode

Allocate free entry in file descriptor array, store pointer to open file table entry
Return index of newly allocated file descriptor array entry

* Every process has 3 files open by default, subsequent open files will get
next free entries in file descriptor array

* Close system call deletes file descriptor and open file table entries

More on open file table

* Every open system call creates new entry in open file table and file
descriptor array

* Suppose same file opened by two separate “open” system calls

* Will result in separate entries in open file table, and file descriptor array,
because offset of reading/writing can be different

* Multiple open file table entries store pointer to same inode of the file

* When parent forks child process, file descriptor array of parent is
duplicated in child process

* Parent and child file descriptor arrays point to same open file table entries
» Offset of file reading/writing are shared between parent and child
e Usually one of them should close the file for correct operation

» Reference count used to track multiple pointers to same entry

Example: same file opened multiple times

Descriptor table Open file table in-memory i-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A _
/ .
fd o - File access
fdl | File pos File size
fd 2 P
fd 3 refent=1 File type
fd 4 ~ .
/
File pos
refcnt=1

Example: file system data structures after fork

Descriptor tables Open file table in-memory i-node table
(shared by (shared by
all processes) all processes)
Parent's table File A .
/ .
fd 0 — File access
fdl File pos File size
fd 2
fd3 refcnt=2 File type
fda ~
Child's table File B / .
40] File access
— o
fd 1 File pos File size
fd 2 ;
fd3 refcnt=2 File type
fd 4

Dup?2 and redirection

* System call dup2 used to Descriptor table Open file table in-memory i-node table
dup|icate file descriptors (one table (shared by (shared by
per process) all processes) all processes)
* One fd entry made as CFileA
duplicate of another 9 S " File access!
entr fd2 . File pos | File size |
Y fd3 refent=0 | l__F_"_?_t_V_E?__i
e Used for I/O redirection f4[__~ P o
py making stdinor stdout g,
as duplicate of a file’s file] o
descriptor File pos .
p refcnt=2 File type

Disk buffer cache

* File data that is read from hard disk is retained in memory for some time in
the disk buffer cache = memory pages that cache recently read disk data

* Any changes to disk data is made in the cached copy of disk buffer cache
first, then written to disk later
* Write-through cache: changes written to disk immediately (synchronous writes)
* Write-back cache: changes written to disk after some delay (asynchronous writes)
* Write-back cache has better performance, but can lose data in case of power failure

* Benefits of disk buffer cache
* Improved performance due to fewer disk accesses
* Merge changes when multiple processes modify same file data

* Most OS allocate unused physical memory to disk buffer cache
* Some applications doing their own optimizations can bypass cache

fd = open(“/home/foo/a.txt”)

char buf[64]

Read system call n = read(fd, buf, 64

* Input is file descriptor, user memory to read into, number of bytes to read
» Use file descriptor array index, access open file table entry, then inode
Based on offset, identify which data block(s) of file to read using inode information

Check if file data block(s) present in disk buffer cache

* If cache miss, device driver issues read command to hard disk, process is moved to blocked
state, OS will context switch to another process

* When read completes, device controller will DMA the block(s) into an empty buffer in disk
buffer cache, raises interrupt

* OS handles interrupt, marks process as ready to run, scheduler will switch to process in future
* Copy requested number of bytes from data block(s) in disk buffer cache into user-
provided memory buffer
User code resumes, system call returns number of bytes actually read, or error
* Actual bytes may be less than requested, e.g., end of file

Write system call

* Input is file descriptor, user memory buffer containing data to be written,
number of bytes to write

Using file descriptor and inode, identify which data block(s) of file to write into

If we are writing beyond end of file, file size expands, new blocks needed
* Allocate new data blocks for file on disk (update free list or bitmap)
* Add new data block numbers into file inode
Locate data block(s) present in disk buffer cache
* |f not, read data block(s) into buffer cache first
Copy requested number of bytes from user memory buffer into data block(s) cached
in disk buffer cache, cached block is now marked “dirty”
* Write-through cache: synchronously write to disk immediately
* Write-back cache: asynchronously update disk copy later

User code resumes (after delay in case of sync write, immediately for async write),
system call returns number of bytes actually written, or error

char *buf = mmap(fd, size, ..)

Memory mapping a file U] = ..

buf[1] = ...
munmap(..)

* Alternate ways to read/write a file is via memory mapping

* mmap system call takes the file descriptor, size of data to memory map, and
other arguments, returns the starting virtual address of mmap region

* File data is read into one or more physical memory frames, which are mapped
at free addresses in the process virtual address space (new page table entries)

* Can access memory mapped file data like any other memory region

* With demand paging, physical frames can be assigned on-demand only when
mmap region accessed

* File can be memory mapped in private or shared mode
* Shared mode: changes to file are written to disk immediately, seen by others
* Private mode: changes to file are written to disk when memory unmapped

mmap vs. read/write syscalls

mmap can be used for file-backed as well as anonymous pages
* Physical frame mapped into address space can be empty frame or with file data

* Memory mapping a file is an easy way to read file data
* Executable code, shared library code are memory mapped into virtual address space

* Memory mapping a file avoids extra data copies
* Read system call reads data first into kernel memory, then copy into user buffer
 Memory mapping a file copies file data into free physical frames, which are directly

accessed by user using virtual addresses
* Memory mapping allows reading disk data in large page-sized chunks
» Useful when reading/writing large amounts of data from file
* Not very efficient when reading files in small chunks

Crash consistency

Every system call updates multiple disk blocks
* Example: when we append data to a file, we change data block, inode block, bitmap, ..

All changes to disk blocks are first made in memory (disk buffer cache), then
written to disk (synchronously or asynchronously)
* Even metadata blocks (inode) are updated first in disk buffer cache

If power failure happens in the middle of a system call, memory changes will be
lost, disk can be only partially updated, may cause inconsistency in file data

* Example: new data block written to disk, but not added to inode (written data is lost)

* Example: new data block number added to inode, but data block contents not written (file

contains garbage data)
Crash consistency: how to ensure filesystem is consistent after a power failure?

* Problem exists even with write-through disk buffer cache, but more prominent with write-
back cache

File system checkers

* Programming tip for crash consistency: always update data blocks on disk first
before updating metadata blocks
* Better to write data block and not link from inode (lost data), rather than link from inode first
and fail to update data block (garbage in file)

* Even with above tip, inconsistency can still occur, especially when multiple
metadata blocks need to be updated
* Example: bitmap updated to mark data block as used, inode updated to add pointer to data
block, which metadata change to write to disk first?

* File system checking tools (e.g., fsck) check inconsistencies in metadata blocks
after reboot and fix the blocks to make them consistent

* Example: data block marked as used in bitmap, but not present in any inode, so mark as free

 What we want: atomicity (all changes pertaining to a system call happen all at once
together or none happens at all)

Logging / journaling

* Logging/journaling: common technique for atomicity in systems
e Can be applied to guarantee crash consistency in file systems also

* How to add logging to any file system?

» All changes to be made to disk blocks are first written to a log on disk, original
disk blocks are not touched

» After all changes are logged to disk, special commit entry written to log
* Next, changes are applied to the original disk blocks, log entries cleared

* If crash happens before log is committed, then no changes are made to any
disk block, it is as if system call never happened

* If crash happens after log is committed, but before changes applied to original
disk blocks, then log is replayed upon reboot and changes are completed

Virtual File System (VFS)

* Different file systems can have different implementations of system calls
* A file system using logging/journaling may write to log first
» A different directory implementation (fixed size records vs linked list) will lead to a
different lookup function
* How to write filesystem code in a modular manner?
* Should be easy to change system call implementations and switch filesystems

 Solution: Virtual File System (VFS)

* Defines a set of objects (files, directories, inodes) and operations to be performed on
these objects (open a file, lookup filename in directory, ..) for various system calls

* A specific filesystem implements these functions on VFS objects, provides pointers to
the functions to be invoked by OS

* OS filesystem code is built in layers for modularity: VFS, filesystem
implementation, disk buffer cache, device driver

