
Mythili Vutukuru
CSE, IIT Bombay

Introduction to I/O subsystem



Input/Output Devices
• CPU and memory 

connected via high speed 
system (memory) bus

• Bus = set of wires carrying 
signals

• I/O devices connect to the 
CPU and memory via other 
separate buses

• High speed bus, e.g., PCI
• Other: SCSI, USB, SATA 

• Point of connection to the 
system: port

2
Image credit: OSTEP



Simple Device Model
• Block devices store a set of numbered blocks (disks)
• Character devices produce/consume stream of bytes (keyboard)
• Devices expose an interface of memory registers

• Current status of device
• Command to execute
• Data to transfer

• Device controller manages device, internals of device are usually hidden

3

Device Controller

Image credit: OSTEP



How does OS read/write to device registers?
• OS communicates with device via device controller on the device
• OS code that communicates with device is called device driver
• OS reads/writes registers in the I//O device: how?
• Explicit I/O instructions

• E.g., on x86, in and out instructions can be used to read and write to specific 
registers on a device

• Privileged instructions accessed by OS
• Memory mapped I/O

• Device makes registers appear like memory locations
• OS simply reads and writes from memory
• Memory hardware routes accesses to these special memory addresses to devices

4



A simple execution of I/O requests

• Simple model of I/O, e.g., read/write block of data from disk
• Give command to device via command register
• Write: transfer data to device via data register
• Poll status register to see if I/O operation completes
• Read: Copy data from data register to main memory after I/O completes

• Polling status to see if device ready constantly – wastes CPU cycles
5



Interrupts
• Polling wastes CPU cycles

• Instead, OS can put process to sleep and switch to another process

• When I/O request completes, device raises interrupt, OS can switch back 
to original process after that request has completed

• Note: context switch to original process need not be immediate
6

Image credit: OSTEP



Interrupt handler

• Interrupt from I/O device causes trap, switches process to kernel mode
• Interrupt Descriptor Table (IDT) stores pointers (value of PC) to OS 

interrupt handlers (interrupt service routines)
• Interrupt (IRQ) number identifies the interrupt handler to run for a device

• Interrupt handler processes notification from device, unblocks the process 
waiting for I/O (if any), and starts next I/O request (if any pending)

• Handling interrupts imposes kernel mode transition overheads
• Note: polling may be faster than interrupts if device is fast

7



Direct Memory Access (DMA)
• In spite of interrupts, CPU cycles wasted in copying data to/from device

• Instead, a special piece of hardware (DMA engine) copies from main 
memory to device and vice versa, without involving CPU

• CPU gives DMA engine the memory location of data
• In case of disk read, device copies data via DMA to RAM and then raises interrupt
• In case of write, device copies data via DMA from RAM and then starts writing

8
Image credit: OSTEP



Summary of disk read with interrupt + DMA

• Process P1 makes read system call to read data from disk
• OS gives command to disk via command register
• OS switches to another process P2 (P1 cannot run anymore, blocked)
• Disk completes reading data, copies data into main memory directly 

via DMA, then raises interrupt
• OS handles interrupts, disk data is ready, marks P1 as ready to run

• Interrupt handled in the kernel mode of P2

• OS scheduler switches back to P1 at a later time



I/O stack in the kernel
• Device driver: part of OS code that talks to specific device, gives 

commands, handles interrupts etc.
• Rest of OS code abstracts out the device-specific details

• I/O subsystems (file system / networking) built as layers: system calls, 
block read/write, device drivers that communicates with I/O device

10
Image credit: OSTEP


