Inter-process communication (IPC)

Mythili Vutukuru
CSE, IIT Bombay

Why inter-process communication

* Application logic in a single system is often distributed across multiple
processes: why?
 Different processes developed independently by different teams
* Different programming languages and frameworks used for different tasks

* Processes in a system do not share any memory with each other by
default, so how do they communicate information with each other?
e Cannot share variables or data structures in programs across processes

* Parent and child have identical but separate memory images after fork, changes
made in one process and not seen by other

* Inter-process communication (IPC) mechanisms, available via operating
system syscalls, allow processes to exchange information

Example: web application architecture

* Example: web applications typically composed of multiple processes

* Web server process handles HTTP (web) requests/responses

* Written in a language like C/C++ for high performance
* Returns responses for static content directly by reading files from disk

* Requests needing dynamic response are handled by application server

* App server parses HTTP requests, generates HTTP response according to the
business logic specified by user, sends response back to client via web server

 Scripting languages may be used for easy text parsing and manipulation
 Application server stores/retrieves app data in a database

 Several web application frameworks available to build web applications
having such architectures, e.g., Python Django, React etc.

IPC mechanisms

* Unix domain sockets: processes open sockets, send and receive
messages to each other via socket system calls

* Message queues: sender posts a message to a mailbox, receiver
retrieves message later on from mailbox

* Pipes: unidirectional communication channel between two processes

* Shared memory: same physical memory frame mapped into virtual
address space of multiple processes in order to share memory

* Signals: specific messages via kill system call
e Different IPC mechanisms are useful in different scenarios

Sockets

* Sockets = abstraction to communicate between two processes
* Each process opens socket, and pair of sockets can be connected

* One process writes a message into one socket, another process can read it,
and vice versa (bidirectional communication)

Processes can be in same machine or on different machines

If processes on same machine, messages stored temporarily in OS memory
before delivering to destination process

If processes on different machines, messages sent over network

Computer A Computer B

Process Pl Process P2

fd = socket () fd = socket ()
send (fd, msg, ...) Network sy recv (fd, msqg,..)
recv(fd,msg,...)é | send (fd, msg,...)

Image credit: Dive Into Systems \)K f)/&

Types of sockets (1)

* Unix domain (local) sockets are used to communicate between
processes on the same machine

* Internet sockets are used to communicate between processes in
different machines

 Local sockets identified by a pathname, Internet sockets identified by
IP (Internet Protocol) address and port number

* Client-server paradigm: one process opens socket first (server) and
another process connects its socket to the first one (client)
* Client/server sockets differentiated by who starts first and who connects later

* Server sockets started first on a well-known “address”, client process connects
to server using the server address

Types of sockets (2)

* Connection-based sockets: one client socket and one server socket
are explicitly connected to each other

* After connection, the two sockets can only send and receive messages to
each other

* Connection-less sockets: one socket can send/receive messages
to/from multiple other sockets

» Address of other endpoint can be mentioned on each message

* Type of socket (local or internet, connection-oriented or connection-
less) is specified as arguments to system call that creates sockets

Creating a socket
bind(sockfd, address)

 System call “socket” used to create a socket
* Takes type of socket as arguments
* Returns socket file descriptor (similar to file descriptor when file is opened)
* Used as handle for all future operations on the socket

* A socket can optionally bind to an address (pathname for Unix
domain sockets or IP address/port number for Internet sockets) using
“bind” system call

» Server sockets bind to well known address, so that clients can connect
 Client sockets need not bind, OS can assign temporary address

* Close system call closes a socket when done

fd = open(“/home/foo/a.txt”)
char buf[64]

The concept of file descriptors EHGATAD

buf[0] = ...
write(fd, buf, 64)

* Many IPC mechanisms like sockets return a file descriptor, which is
simply an integer “handle” to access a file or socket or pipe

* PCB of process contains list of all open files/sockets/pipes in an array

* When file or socket or pipe is opened, new entry is created in array,
new index returned

 All future system calls (read, write) will be given the file descriptor as
one of the arguments

fd 0 -,

STDIN
STDOUT

File descriptor table fd 2 STDERR

| >
(list of open files of a process) fd3 i Information about
(part of PCB of process) 1 file or socket or pipe

fd 1 —

Data exchange using connection-less sockets

* Function sendto is used to send a message from one socket to
another connection-less socket in another process
* Arguments: socket fd, message to send, address of remote socket

* Function recvfrom is used to receive a message from a socket

* Arguments: socket fd, message buffer into which received message is copied,
socket address structure into which address of remote endpoint is filled

* When a process receives a message on connection-less socket, it can find out
the address of other endpoint, and use this address to reply back

Client Server

sockfd = socket(..) sockfd = socket(..)
char message[1024] bind(sockfd, server_address)

sendto(sockfd, message, server_sockaddr, ..) | recvfrom(sockfd, message, client_sockaddr, ..)

Connecting sockets

* Connection-oriented sockets must be explicitly connected to each other before
exchanging messages

e After server binds socket to well-known address, it uses “listen” system call to
make the socket listen for new connections

 Client uses “connect” system call to connect to a server listen socket

* Connect system call blocks until messages exchanged with server to complete connection
procedure (more later)

» Server uses “accept” system call to accept new connection requests
* Accept system call blocks until new connection is received
* Returns a new socket file descriptor to communicate exclusively with a connected client

* At server: one listen socket to accept new connections, one connected socket for
every connected client to send/recv messages

Client =18l sockfd = socket(..)
sockfd = socket(..) bind(sockfd, server_address)
listen(sockfd, ..)

connect(sockfd, server_sockaddr, ..)

newsockfd = accept(sockfd, ..)

Data exchange using connected sockets

 After client connects to server, pair of sockets used to exchange data
* Note that per-client connected socket is used at server, not listen socket
» System calls send/write used to send message on a connected socket
» System calls recv/read used to receive message on a connected socket

e Arguments to send/recv: socket fd, message buffer, buffer length, flags
* Return value is number of bytes read/written or error
* No need to specify socket address on every message, as connected already
* Send/recv has extra flags argument, as compared to read/write system calls
* Flags control where system call blocks and other behavior

Client SRS o ckid = socket(..)

bind(sockfd, server_address)
listen(sockfd, ..)

sockfd = socket(..)
connect(sockfd, server_sockaddr, ..)

newsockfd = accept(sockfd, ..)
n = recv(newsockfd, req_buf, req_len, ..)
n = send(newsockfd, resp_buf, resp_len, ..)

n = send(sockfd, req_buf, req_len, ..)
n = recv(sockfd, resp_buf, resp_len, ..)

msgid = msgget(key, ...)
Message queues msgsnd(msgid, message, ...)

msgrcv(msgid, message, ...)

* Message queues used for exchanging messages between processes
* Open connection to message queue identified by a “key”, get a handle
* Sender opens connection to message queue, sends message
* Receiver opens connection to message queue, retrieves message later on
* Message buffered within message queue / mailbox until retrieved by receiver

* Example: IPC in web application using message queues
* Web server posts dynamic HTTP requests into message queue
* App server retrieves requests and processes them
* App server posts responses into message queue for web server

Pipes

* Pipeis a unidirectional FIFO channel
into which bytes are written at one end,
read from other end

 System call “pipe” creates a pipe
channel, with two file descriptors for
endpoints, returns 2 integers

* One file descriptor used to write into
pipe, one to read from pipe

* Data written into pipe is stored in a
buffer of the pipe channel until read

* Bi-directional communication needs
two pipes

int fd[2]
pipe(fd) //anonymous

read(fd[0], message, ..)
write(fd[1], message, ..)

File descriptor table
(list of open files of a process)
(part of PCB of process)

fd 0

fd1

fd 2

fd 3

fd 4

| >

STDIN
STDOUT
STDERR

PIPE
B BUFFER

| >

Anonymous pipes

* Anonymous pipes (using pipe system call) only available for use within

process and its children

* Open pipe before fork, so pipe file descriptors shared between parent and
child, point to same pipe structure

* One of parent/child closes read end, other closes write end

* Pipe file descriptors used to read/write messages between parent/child

File descriptor
table of parent

fd 0

fd 1

fd 2

fd 3

fd 4

I

I

| >

STDIN
STDOUT
STDERR

PIPE
- BUFFER ‘

fd 0
fd1
fd 2
fd 3

fd 4

File descriptor
table of child

Pipes in shell commands

* How does shell run commands with pipes (output of one command
given as input to another command)?

* Shell opens a pipe, shared with child processes that run commands

* Shell duplicates stdout of first child to write end of pipe, read end of
pipe to stdin of second process

* Processes must close file descriptors they are not using

STDOUT of P1 STDIN of P2

Process P1 R - & Process P2

Pipe buffer

Named pipes

* How to use pipes between unrelated processes? Named pipes

* Named pipes opened with a pathname, accessible across processes
* One process accesses read end of pipe, another opens write end

* Named pipe also provides uni-directional communication

* Writing to pipe with no reader open will throw an error

Writer

Reader i fd = open(name, O_ WRONLY)
write(fd, message, ...)

fd = open(name, O_RDONLY)
read(fd, message, ..)

Blocking vs. non-blocking [PC

* Same high level concept across sockets, pipes, message queues
* Sender sends message, temporarily stored in some memory inside OS
* Receiver retrieves message later on from temporary OS memory

» Send/receive system calls can block
* Sender can block if temporary buffer is full
* Receiver can block if temporary buffer is empty

* Possible to configure IPC to be non-blocking using syscalls
» Send/receive will return with error instead of blocking

Shared memory shmid = shmget(key, ..)

char *data = shmat(shmid, ..)

* Processes in a system do not share any memory by default
* Child process gets copy of parent memory image, modifies independently

e Shared memory: a way for two processes to share memory
* Same memory appears in memory image of multiple processes
* Shared memory segment identified by a unique key
* Process can request to map or “attach” a specific shared memory segment into its
memory image by using key

* Processes may need extra mechanisms for coordination besides shared
memory

* E.g., how does one process know when another process has modified shared
memory?

Signals
* Signal: a way to send notifications to processes

 Standard signals available in operating systems, each corresponding to a
specific event, and with a specific signal number

Signal Name Description

SIGSEGV Segmentation fault (e.g., dereferencing a null pointer)

SIGINT Interrupt process (e.g., Ctrl-C in terminal window to kill process)

SIGCHLD Child process has exited (e.g., a child is now a zombie after running exit)
SIGALRM Notify a process a timer goes off (e.g., alarm(2) every 2 secs)

SIGKILL Terminate a process (e.g., pkill -9 a.out)

SIGBUS Bus error occurred (e.g., a misaligned memory address to access an int value)

SIGSTOP Suspend a process, move to Blocked state (e.g., Ctrl-Z)

SIGCONT Continue a blocked process (move it to the Ready state; e.g., bg or fg)
Image credit: Dive Into Systems

How to send signals?

 System call kill can be used to send a signal from one process to other
* Kill system call can send all signals, not just SIGKILL
* Some restrictions on who can send to whom for isolation and security

* Kill command uses this syscall, e.g., “kill -9 <pid>" sends SIGKILL (#9)

* Signals can also be generated by OS for a process, e.g., when it handles
interrupt due to Ctrl+C keyboard event
* Interrupt handler for Ctrl+C sends the signal to the process in foreground

Signal handling

* Signals to a process are queued up by OS and delivered when process
goes from kernel mode to user mode next

» Default behavior defined by OS for a process receiving a signal
* Ignore some signals (e.g., SIGCHLD)
* Terminate when some signals are received (e.g., SIGINT)

* User processes can define their own signal handler functions to be
executed when a signal is received

e Override default behavior defined for a signal
* Some signals (e.g., SIGKILL) cannot be overridden

* Process jumps to signal handler, executes it, resumes normal execution
afterwards (if still alive)

Process groups

* When we type Ctrl+C on keyboard, which processes get the signal?

* Processes are organized into process groups, every process belongs
by default to process group of its parent

* When signal is sent to a process, it is delivered to all processes in its
process group by default

* Example: when we hit Ctrl+C on keyboard, signal sent to all processes
in the foreground process group

 System call setpgid can be used to change process group of signals, to
control signal distribution

Examples: sending and catching signals

* Parent sends SIGKILL to child) Defaql(;cdSIGlNT hander
using kill system call overridaen

e Chi i TN : * Process prints message before
Ei?llé(gi rsjynsg?elgflmte loop unti terminating on SIGINT

void sigint_handler(int si
int pid = fork() print “caught signal”
if(pid == 0) { exit()
hile(1); //infinite | }

//terminates on SIGKILL int main() {
} signal(SIGINT, sigint_handler)

//parent "
kill(pid, SIGKILL) }

