
Mythili Vutukuru
CSE, IIT Bombay

Locking

Recap: Shared data access in threads
• The C code “counter = counter + 1” is compiled into multiple instructions

• Load counter variable from memory into register
• Increment register
• Store register back into memory of counter variable

• What happens when two threads run this line of code concurrently?

• Counter is 0 initially
• T1 loads counter into register, increment reg
• Context switch, register (value 1) saved
• T2 runs, loads counter 0 from memory
• T2 increments register, stores to memory
• T1 resumes, stores register value to counter
• Counter value rewritten to 1 again
• Final counter value is 1, expected value is 2

load counter  reg
reg = reg + 1
(context switch, save reg)

(resume, restore reg)
store reg counter

T1

load counter  reg
reg = reg + 1
store reg counter

T2

load counter  reg
reg = reg + 1
store reg counter

Recap: Race conditions, critical sections

• Incorrect execution of code due to concurrency is called race condition
• Due to unfortunate timing of context switches, atomicity of data update violated

• Race conditions happen when we have concurrent execution on shared data
• Threads sharing common data in memory image of user processes
• Processes in kernel mode sharing OS data structures

• We require mutual exclusion on some parts of user or OS code
• Concurrent execution by multiple threads/processes should not be permitted

• Parts of program that need to be executed with mutual exclusion for correct
operation are called critical sections

• Present in multi-threaded programs, OS code

• How to access critical sections with mutual exclusion? Using locks

Using locks

• Locks are special variables that provide
mutual exclusion

• Provided by threading libraries
• Can call lock/acquire and unlock/release

functions on a lock
• When a thread T1 acquires a lock, another

thread T2 cannot acquire same lock
• Execution of T2 stops at the lock statement
• T2 can proceed only after T1 releases the lock

• Acquire lock  critical section  release lock
ensures mutual exclusion in critical section

int counter;
pthread_mutex_t m;

void start_fn() {

for(int i=0; i < 1000; i++) {
pthread_mutex_lock(&m)
counter = counter + 1
pthread_mutex_unlock(&m)

}

main() {
counter = 0

pthread_t t1, t2
pthread_create(&t1,.., start_fn, ..)
pthread_create(&t2, .., start_fn,..)

pthread_join(t1, ..)
pthread_join(t2, ..)

print counter
}

int counter;
pthread_mutex_t m;

void start_fn() {

for(int i=0; i < 1000; i++) {
pthread_mutex_lock(&m)
counter = counter + 1
pthread_mutex_unlock(&m)

}

main() {
counter = 0

pthread_t t1, t2
pthread_create(&t1,.., start_fn, ..)
pthread_create(&t2, .., start_fn,..)

pthread_join(t1, ..)
pthread_join(t2, ..)

print counter
}

How to implement a lock?
• Goals of a lock implementation

• Mutual exclusion (obviously!)
• Fairness: all threads should eventually get the lock, and no thread should

starve
• Low overhead: acquiring, releasing, and waiting for lock should not consume

too many resources

• Implementation of locks are needed for both userspace programs (e.g.,
pthreads library) and kernel code

• Separate implementations in user libraries and OS

5

Incorrect lock implementation
• Example of incorrect lock implementation

• Use variable isLocked to indicate lock status (0
means lock is free, 1 indicates it is acquired)

• To acquire lock, a thread waits as long as lock is
busy, and then sets it to 1 (acquired)

• One interleaving of executions (left) works while
another (right) may not work

int isLocked = 0

void acquire_lock() {
while(isLocked == 1); //wait
isLocked = 1

}

void release_lock() {
isLocked = 0

}

int isLocked = 0

void acquire_lock() {
while(isLocked == 1); //wait
isLocked = 1

}

void release_lock() {
isLocked = 0

}

while(isLocked==1);
isLocked = 1

CRITICAL SECTION

isLocked = 0

T1

while(isLocked==1);
while(isLocked==1);
while(isLocked==1);
while(isLocked==1);
isLocked = 1

CRITICAL SECTION

T2

while(isLocked==1);
(context switch, PC saved)

(resumes execution)
isLocked = 1
CRITICAL SECTION

T1

while(isLocked==1);
isLocked = 1
CRITICAL SECTION

T2

Hardware atomic instructions
• Need a way to check a variable and set its value atomically

• No context switch between checking lock variable and setting it
• But user programs have no control over context switches

• Solution: use hardware atomic instructions
• Example: test-and-set hardware atomic instruction

• Two arguments: address of variable and new value to set
• Writes new value into a variable and returns old value in one single step
• Entire logic implemented in hardware, runs in one single step

Lock implementation using test-and-set
• Simple lock can be implemented using test-and-set instruction

• isLocked variable indicates lock status (0=free, 1=acquired)
• If test-and-set(&isLocked, 1) returns 1, it means lock is not free, wait
• If test-and-set(&isLocked, 1) returns 0, lock was free and was acquired, done!

• No further race conditions possible with this lock implementation
• All modern lock implementations based on such hardware instructions
• Software based locking algorithms do not work well in modern systems

int isLocked = 0

void acquire_lock() {
while(test-and-set(&isLocked, 1) == 1); //wait
//return, lock is acquired

}

int isLocked = 0

void acquire_lock() {
while(test-and-set(&isLocked, 1) == 1); //wait
//return, lock is acquired

}

Image credit: OSTEP

Another instruction: compare-and-swap
• Another example: compare-and-swap (CAS) hardware atomic instruction

• Three arguments: address of variable, expected old value, new value
• If variable has expected old value, then write new value and return true; else do

not change variable and return false

Image credit: OSTEP

Lock using CAS

• Lock implementation using compare-and-swap
• If compare-and-swap(&isLocked, 0, 1) returns false, it means lock is busy, wait
• If compare-and-swap(&isLocked, 0, 1) returns true, it means old value of lock

was 0 and was changed to 1, so lock has been acquired, done!

int isLocked = 0

void acquire_lock() {
while(compare-and-swap(&isLocked, 0, 1) == false); //wait

}

int isLocked = 0

void acquire_lock() {
while(compare-and-swap(&isLocked, 0, 1) == false); //wait

}

Evaluating spinlock implementations

• Correctness: does it lead to mutual exclusion correctly?
• Fairness: are all waiting threads treated fairly? Can we guarantee that

every waiting thread will get its turn?
• The implementations we saw here do not guarantee it

• Performance: overheads of having threads spin for lock
• Single core system: what happens when thread holding lock is context

switched out and other threads that are scheduled continue to spin for lock?
• Problem less severe in multicore system. Why? (Thread holding lock can finish

while other threads are spinning)

Spinlock vs. sleeping mutex

• Simple lock implementation seen here is a spinlock
• If thread T1 has acquired lock, and thread T2 also wants lock, then T2 will keep

spinning in a while loop till lock is free

• Another implementation option: thread can go to sleep (be blocked) while
waiting for lock, saving CPU cycles

• OS blocks waiting thread, context switch to another thread/process
• Such locks are called (sleeping) mutex

• Threading libraries provide APIs for both spinlocks and sleeping mutex
• Better to use spinlock if locks are expected to be held for short time, avoid context

switch overhead
• Better to use sleeping mutex if critical sections are long

Guidelines for using locks

• When writing multithreaded programs, careful locking discipline
• Protect each shared data structure with one lock
• Locks can be coarse-grained (one big fat lock) or fine-grained (many smaller locks)
• Any thread wanting to access shared data must acquire corresponding lock before

access, release lock after access

• If using third-party libraries in multi-threaded programs, check the
documentation to see if if the library is thread-safe

• Thread-safe implementations work correctly with concurrent access

Guidelines for using locks

• Good practice to acquire locks for both reading and writing data
• Why locks for reading? We do not want to read incorrect data while another

thread is concurrently updating the data
• Some libraries provide separate locks for reading and writing, allowing

multiple threads to concurrently read data if no other thread is writing

• Good practice to minimize use of locks, use only when needed
• Why? Use of locks serializes thread access, removes gains due to parallelism
• Example of minimizing lock usage: instead of each thread updating shared

global counter, let each thread update a local counter, and periodically update
global counter

Image credit: OSTEP

