
Mythili Vutukuru
CSE, IIT Bombay

Introduction to memory management

Memory management in OS

• When program is run, memory image of
process is created by OS

• Code + compile-time data from executable
loaded into main memory

• Extra memory allocated for stack and heap

• CPU begins executing process
• How does CPU locate code/data in

memory? Using memory addresses

Image credit: OSTEP

Memory access using physical addressing

• CPU can use the actual physical address
(byte # in RAM) of the instruction or
data to fetch it

• Not very convenient or practical
• How does compiler know the physical

addresses it must assign to code/data in
the executable at compile time?

• What if we need to move the memory
image to another location in RAM?

• Modern systems use the concept of
virtual addressing

0:
1:

M -1:

Main memory

Physical
address
(PA)CPU

2:
3:
4:
5:
6:
7:

4

Data word

8: ...

Image credit: CSAPP

Abstraction: (Virtual) Address Space

4

• Virtual address space: every process
assumes it has access to a large space of
memory from address 0 to a max value

• Max value depends on #bits available to
address memory
• 2^32 = 4GB in 32-bit machines

• Virtual address space contains all
code/data that a process can access

• Addresses in CPU registers and pointer
variables = virtual addresses

• CPU issues loads and stores to virtual
addresses

Image credit: OSTEP

Memory access using virtual addressing
• Code+data in memory image assigned virtual addresses starting from 0
• On every memory access, virtual address (VA) translated to physical

address (PA) by special hardware called Memory Management Unit
(MMU)

• CPU fetches code/data using virtual addresses, MMU translates to
physical addresses (using info provided by OS)

MMU

Physical
address
(PA)

...

0:
1:

M-1:

Main memory

Virtual
address
(VA)CPU

2:
3:
4:
5:
6:
7:

4100

Data word

4

CPU chip
Address
translation

Image credit: CSAPP

Why virtual addresses?

6

• Because real view of memory is messy!
• Earlier, main memory had only code of

one running process (and OS code)
• Now, multiple active processes

timeshare CPU
• Memory allocation can be non-

contiguous
• Need to hide this complexity from user
• Also, physical address not known at

compile time

Image credit: OSTEP

Base and bound

• How are virtual address spaces mapped to physical memory?
• Simplest form of memory management: base and bound

• Place memory image [0,N] contiguously starting at memory address base B
• Virtual address X translated to physical address B+X
• Access to virtual addresses beyond N will not be permitted

• OS provides base and bound to MMU for translation/error checking
• When CPU access a VA, MMU computes PA = VA + base, physical

memory accessed with PA

A simple example
• Consider a simple C function

• It is compiled as follows

• Virtual address space is setup by OS
during process creation

8
Image credit: OSTEP

Example: address translation

• Suppose OS places entire memory
image in one chunk, starting at physical
address 32KB

• OS indicates base and bound to MMU
• MMU performs the following

translation from VA to PA
• PA = VA + base

• VA = 128, PA = 32896 (32KB + 128)
• VA = 1KB, PA = 33 KB
• VA = 20KB? PA = ???

• MMU raises trap when address out of
bound

9Image credit: OSTEP

Role of OS vs MMU

• OS allocates memory, builds translation information of process
• But OS does not do the actual address translation on every memory access
• Why? Once user code starts running on CPU, OS is out of the picture (until a trap)

• When process is switched in, translation information is provided to MMU
• CPU runs process code, accesses code/data at virtual addresses

• Virtual addresses translated to physical addresses by MMU
• Actual physical memory is accessed using physical addresses

• MMU raises a trap if there is any error in the address translation
• CPU executes trap instruction, OS code runs to handle the error

• OS gives new information to MMU on every context switch

Segmentation

• Older way of memory management, generalized base and bounds
• Each segment of the program (code, data, stack,..) is placed separately in

memory at a different base
• Every segment has a separate base and bound

• Virtual address = segment identifier : offset within segment
• Physical address = base address of segment + offset within segment

• Bound of a segment checked for incorrect access

• Multiple base, bound values stored in MMU for translation
• MMU throws a segmentation fault if a segment accessed beyond bound

• Program fault, traps to OS to handle error, may terminate process

Paging
• Widely used memory management system today
• Virtual address space divided into fixed size pages
• Each page is assigned a free physical frame by OS
• Memory allocation is at granularity of fixed size pages (e.g., 4KB)
• Why paging? Avoids external fragmentation

• No wastage of space due to gaps between allocated and free memory
• Internal fragmentation may be there (space wasted inside partially filled page)

• Disadvantage: internal fragmentation (partially filled pages)
• Page table of a process maps virtual page numbers (VPN) to physical

frame numbers (PFN) for every page

Paging

Code/data

Heap

Stack

…..

Address = 0

Address = 4GB

Virtual address space Physical address space

Address = X

Address = Y

Address = Z

Page (4KB)

CPU

Fetch address 5KB
(1KB inside second page)

Fetch address Y+1KB
(Y obtained from page table)

Translation Lookaside Buffer (TLB)

• Overhead of memory translation: every memory access preceded by
extra memory accesses to read page table

• To reduce this overhead, MMU caches the most recent translations in
translation lookaside buffer (TLB)

• TLB only caches page table entries (VPN  PFN mappings), not actual
memory contents

• Different from CPU caches that cache actual memory contents
• If TLB hit, fetch memory contents in one memory access
• If TLB miss, MMU must perform extra memory access for page table

access (“page table walk”)
• TLB flush on context switch: mappings cached in TLB change

TLB hit

1. CPU accesses virtual address
2. MMU looks up page number

in TLB
3. If TLB hit, page table entry is

available, physical address
computed

4. CPU directly accesses
required code/data using
physical address

VAProcessor Trans-
lation

Cache/
memoryPA

Data

CPU chip

TLB

VPN Page table entry

1

2
3

4

5

Image credit: CSAPP

TLB miss

1. CPU accesses virtual address
2. MMU looks up page number in

TLB, cannot find entry
3. MMU looks up page table in

memory to find page table entry
4. Page table entry populated in TLB

for future use
5. MMU computes physical address

using which CPU accesses main
memory

VAProcessor Trans-
lation

Cache/
memory

Lookup page table entry

Data

CPU chip

TLB

VPN Page table entry

PA

1

2

3

4

5

6

Image credit: CSAPP

Putting it all together: what happens on a
memory access?

• CPU has requested data (or instruction) at a certain memory address
• If requested address not in CPU cache, CPU must fetch data from main memory
• CPU knows only virtual address of instruction or data required
• MMU looks up TLB to find frame number corresponding to page number
• If TLB hit, physical address is found, main memory is accessed to fetch data
• If TLB miss, MMU first accesses page table in main memory, computes physical

address, then accesses main memory again to fetch data
• Fetched page table entries and data are populated in TLB / caches

• High CPU cache hit rates and high TLB hit rates are important for good
performance of the system

