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Introduction to memory management



Memory management in OS

• When program is run, memory image of 
process is created by OS 

• Code + compile-time data from executable 
loaded into main memory

• Extra memory allocated for stack and heap

• CPU begins executing process
• How does CPU locate code/data in 

memory? Using memory addresses
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Memory access using physical addressing

• CPU can use the actual physical address 
(byte # in RAM) of the instruction or 
data to fetch it

• Not very convenient or practical
• How does compiler know the physical 

addresses it must assign to code/data in 
the executable at compile time?

• What if we need to move the memory 
image to another location in RAM?

• Modern systems use the concept of 
virtual addressing
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Abstraction: (Virtual) Address Space
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• Virtual address space: every process 
assumes it has access to a large space of 
memory from address 0 to a max value

• Max value depends on #bits available to 
address memory
• 2^32 = 4GB in 32-bit machines

• Virtual address space contains all 
code/data that a process can access

• Addresses in CPU registers and pointer 
variables = virtual addresses

• CPU issues loads and stores to virtual 
addresses
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Memory access using virtual addressing
• Code+data in memory image assigned virtual addresses starting from 0
• On every memory access, virtual address (VA) translated to physical 

address (PA) by special hardware called Memory Management Unit 
(MMU)

• CPU fetches code/data using virtual addresses, MMU translates to 
physical addresses (using info provided by OS)
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Why virtual addresses?
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• Because real view of memory is messy!
• Earlier, main memory had only code of 

one running process (and OS code)
• Now, multiple active processes 

timeshare CPU
• Memory allocation can be non-

contiguous 
• Need to hide this complexity from user
• Also, physical address not known at 

compile time
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Base and bound

• How are virtual address spaces mapped to physical memory?
• Simplest form of memory management: base and bound

• Place memory image [0,N] contiguously starting at memory address base B
• Virtual address X translated to physical address B+X
• Access to virtual addresses beyond N will not be permitted

• OS provides base and bound to MMU for translation/error checking
• When CPU access a VA, MMU computes PA = VA + base, physical 

memory accessed with PA



A simple example
• Consider a simple C function

• It is compiled as follows

• Virtual address space is setup by OS  
during process creation
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Example: address translation

• Suppose OS places entire memory 
image in one chunk, starting at physical 
address 32KB

• OS indicates base and bound to MMU
• MMU performs the following 

translation from VA to PA
• PA = VA + base

• VA = 128, PA = 32896 (32KB + 128)
• VA = 1KB, PA = 33 KB
• VA = 20KB? PA = ???

• MMU raises trap when address out of 
bound

9Image credit: OSTEP



Role of OS vs MMU 

• OS allocates memory, builds translation information of process
• But OS does not do the actual address translation on every memory access
• Why? Once user code starts running on CPU, OS is out of the picture (until a trap)

• When process is switched in, translation information is provided to MMU
• CPU runs process code, accesses code/data at virtual addresses

• Virtual addresses translated to physical addresses by MMU
• Actual physical memory is accessed using physical addresses

• MMU raises a trap if there is any error in the address translation
• CPU executes trap instruction, OS code runs to handle the error

• OS gives new information to MMU on every context switch



Segmentation

• Older way of memory management, generalized base and bounds
• Each segment of the program (code, data, stack,..) is placed separately in 

memory at a different base
• Every segment has a separate base and bound

• Virtual address = segment identifier : offset within segment
• Physical address = base address of segment + offset within segment

• Bound of a segment checked for incorrect access

• Multiple base, bound values stored in MMU for translation
• MMU throws a segmentation fault if a segment accessed beyond bound

• Program fault, traps to OS to handle error, may terminate process



Paging
• Widely used memory management system today
• Virtual address space divided into fixed size pages
• Each page is assigned a free physical frame by OS
• Memory allocation is at granularity of fixed size pages (e.g., 4KB)
• Why paging? Avoids external fragmentation 

• No wastage of space due to gaps between allocated and free memory
• Internal fragmentation may be there (space wasted inside partially filled page)

• Disadvantage: internal fragmentation (partially filled pages)
• Page table of a process maps virtual page numbers (VPN) to physical 

frame numbers (PFN) for every page
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Translation Lookaside Buffer (TLB)

• Overhead of memory translation: every memory access preceded by 
extra memory accesses to read page table

• To reduce this overhead, MMU caches the most recent translations in 
translation lookaside buffer (TLB)

• TLB only caches page table entries (VPN  PFN mappings), not actual 
memory contents

• Different from CPU caches that cache actual memory contents
• If TLB hit, fetch memory contents in one memory access
• If TLB miss, MMU must perform extra memory access for page table 

access (“page table walk”)
• TLB flush on context switch: mappings cached in TLB change



TLB hit

1. CPU accesses virtual address
2. MMU looks up page number 

in TLB
3. If TLB hit, page table entry is 

available, physical address 
computed

4. CPU directly accesses 
required code/data using 
physical address 
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TLB miss

1. CPU accesses virtual address
2. MMU looks up page number in 

TLB, cannot find entry
3. MMU looks up page table in 

memory to find page table entry
4. Page table entry populated in TLB 

for future use
5. MMU computes physical address 

using which CPU accesses main 
memory
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Putting it all together: what happens on a 
memory access?

• CPU has requested data (or instruction) at a certain memory address
• If requested address not in CPU cache, CPU must fetch data from main memory
• CPU knows only virtual address of instruction or data required
• MMU looks up TLB to find frame number corresponding to page number
• If TLB hit, physical address is found, main memory is accessed to fetch data
• If TLB miss, MMU first accesses page table in main memory, computes physical 

address, then accesses main memory again to fetch data
• Fetched page table entries and data are populated in TLB / caches

• High CPU cache hit rates and high TLB hit rates are important for good 
performance of the system


