
Mythili Vutukuru
CSE, IIT Bombay

Network I/O subsystem in Linux

Networking applications

• Networking applications: web
server, email client, browser
etc..

• Exchange network packets via
APIs like sockets

• Servers open sockets at well
known IP address + port number

• Socket of web client connects to
socket at web server, send and
receive messages

Socket

Client
application

Socket

Server
application

connect
send
receive

IP, port

What happens inside the kernel?
• What happens when you send and

receive data through a socket?
• The story of what happens over the

network will be covered in your
networking course

• What happens at the sender and receiver
end host kernel network stack?

• Many recent advances, to help kernel
keep up with increasing network speeds

Socket

Network
Application

packet

User space

Kernel space

send
receive

Outside end host: switching,
routing, congestion control

Device drivers

• Device driver manages
interaction between NIC
(network interface card) and
software

• Configures NIC via memory
mapped I/O (MMIO)

• NIC performs Direct Memory
Access (DMA) of network
packets into kernel memory

• NIC raises interrupt to indicate
reception of packets

• We will discuss only RX path here

Device Driver (OS)

NIC
(hardware)

packet

Kernel Memory

1

2

3

MMIO
DMA
Interrupt

DMA

Interrupt

Interrupt handling
• How are interrupts handled?

• CPU is running process P and interrupt arrives
• CPU saves context of P, runs OS code to handle interrupt in kernel mode
• Restore context of P, resume P in user mode

• Interrupt handling code is part of OS device drivers
• Network device drivers handle interrupts from NICs

Image credit: Dive into Systems, by Mathews, Newhall, Webb

Network Interrupt handling

• Interrupt handling from NIC involves lot of work
• Processing information about the network, congestion control, …

• To avoid excessive disruption to interrupted process, NIC interrupt
handling split into two parts

• Top half interrupt handler acknowledges interrupt, does minimal
processing, disables future interrupts

• Top half schedules a kernel process for full interrupt handling, called
bottom half interrupt handler

• Bottom half processes all packets received so far, re-enables interrupts

Device driver rings
• NIC and kernel exchange information about packets via TX/RX “rings”
• RX ring: circular array containing pointers to received packets
• NIC does DMA, updates pointer in RX ring, interrupts
• Top half does minimal processing, schedules bottom half

NIC

packet

Kernel Memory
12

3

RX

Top Half
Interrupt
Handler

Process X

CPU

4

Interrupt

Bottom half interrupt handler
• Bottom half or ksoftirq process scheduled when CPU is free
• Processes all packets collected in the RX ring since the last round

• Allocates socket buffer (sk_buff) structure for each packet
• Socket buffer contains pointer to different fields (headers) in the packet

• Interrupt + ksoftirq can run on multiple cores

packet

Kernel Memory

RX

Process X

CPU

ksoftirq

Scheduler

Allocate
skb_buff

5 6

Network layer processing
• Bottom half interrupt handler performs all the network processing

• Parsing and checking packet headers in sk_buff structure
• IP routing, TCP reliability and congestion control algorithms (you will learn

more about this in the networking course)

sk_buff

packet

Kernel Memory

RX

Process X

CPU

softirq

Scheduler

Allocate
skb_buff

TCP/IP processing

5 6

7

Packet copy to sockets
• Packet headers

(port number)
used to map
received packet
to socket

• On read from
application,
packet payload
copied from
kernel memory to
user memory

sk_buff

packet

Kernel Memory

RX

Process X

CPU

softirq

Scheduler

Allocate
skb_buff

TCP/IP processing

Socket packet

5 6

7

8

9

User Memory

Overheads of the Linux network stack

• Interrupt handling, transition across user and kernel mode
• Context switching from application to ksoftirq
• Packet copy from kernel to user space

N
IC Interrupt

Handler

Packet
Processing in

ksoftirq

Socket read()

Kernel Network Stack User space Application

Context Switching sk_buff allocation Packet Copy

Need for alternate fast network I/O tchniques

12

Host Kernel Network Stack

Multi-Core Application
(6 threads)

100 Gbps NIC

Throughput << NIC Line Rate

Max throughput possible is ~15 Gbps [1]

[1] T. Høiland-Jørgensen et al., “The eXpress data path: fast programmable packet processing in the operating system kernel”

• Multi-threaded applications cannot
easily achieve line rate in modern high-
speed NICs, especially with small-sized
packets

• Techniques to improve processing
speed include kernel bypass techniques
(directly DMA packets into user space)
and using polling-mode device drivers

• Possible to process 100s of Gbps easily
in software using such techniques

Fast I/O techniques

NIC

Interrupt
Handling

Packet
Processing

Socket

User Space
Application

packet

packet

User space

Kernel space

12

3

5

4

Generic Kernel Network Stack
High packet processing overheads

NIC

Interrupt
Handling

Custom
Processing

packet

User space

Kernel space

12

3

User Space
Application

NIC

User space

Kernel space

1

2

User Space
Application

packet

In-Kernel Program Offload (eBPF)
Push some extra application
functionality into the kernel

Kernel Bypass (DPDK / AFXDP)
Get packets directly into user
space application

In-kernel packet processing with eBPF
• eBPF (extended Berkeley Packet Filter) is a way to embed custom

packet processing code in the kernel safely at specific hook points

User writes C-like
code and loads
into eBPF hooks

Code verified to be
safe (does not
crash kernel)

Compiled byte
code loaded at
kernel hook points Share information with

userspace via eBPF maps
Image source: [ebpf.io]

User’s compiled
code runs inside
kernel at desired
hook points

Kernel bypass with DPDK

• Another widely used kernel bypass
mechanism

• Poll mode driver in userspace, kernel
driver is just passthrough

• Polls device, fetches and processes batches
of packets

• Packet buffers in user space pre-allocated
buffers, huge pages

• Pros: Minimal involvement of kernel,
high packet processing rates

• Cons: kernel tools don’t work anymore,
hard to co-exist with other apps

NIC

UIO / VFIO

User Space PMD

Ke
rn

el
U

se
rs

pa
ce DPDK

Application

mbuff

mbuff

mbuff

..

mempool

ring

Kernel bypass with AF_XDP

• Regular sockets (AF_INET) receive
packets after TCP/IP processing

• AF_XDP is special type of socket that can
receive packets directly from XDP hook

• Packet DMA directly into user space (with
driver support), no extra copy, no kernel
stack processing overhead

• Program at XDP hook notifies user space app
via poll/interrupt mechanisms

• Higher throughputs possible, while
allowing kernel some control

NIC

User space

Kernel space

1

2

User Space
Application

AF_XDP socket
packet

XDP

DMA into
user
program

Application
notified via
poll/interrupts

eBPF, XDP, AF_XDP – the connection
• eBPF programs can be safely embedded inside specific hook points to

add custom functionality to kernel network stack
• eBPF program at XDP hook can also redirect packets to AF_XDP

sockets for processing inside userspace application

Another problem: memory access bottleneck
• Memory wall: DRAM speeds have not increased as much as CPU or

network hardware
• On high speed network links, only few nanoseconds budget per

packet, but accessing main memory takes hundreds of nanosec

NIC

packet

Main Memory

Software
(application / OS)

CPU

L1L1 L2L2 LLCLLC

packet

Direct Cache Access / DDIO
• Direct Cache Access (Intel’s DDIO): NIC writes packet directly into CPU

caches, and does not DMA into main memory
• User/kernel software can access packet quickly from cache
• Leads to much faster network packet processing

NIC

Main Memory

Software
(application / OS)

CPU

L1L1 L2L2 LLCLLC
packet

