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Networking applications

* Networking applications: web

server, email client, browser
etc..

Client

application

* Exchange network packets via
APIs like sockets

» Servers open sockets at well
known IP address + port number

e Socket of web client connects to
socket at web server, send and

connect
send

receive

receive messages

Server
application

I

W IP, port




What happens inside the kernel?

* What happens when you send and —
receive data through a socket? \
etwork
* The story of what happens over the Spplicatign® |
network will be covered in your send
networking course Userspace < /! r_ eceive

 What happens at the sender and receiver Kernel space Socket |

end host kernel network stack? ?
* Many recent advances, to help kernel
keep up with increasing network speeds

Outside end host: switching,
routing, congestion control




Device drivers

Kernel Memory
[ MMIO J —

DMA
Interrupt

* Device driver manages
interaction between NIC
(network interface card) and
software

* Configures NIC via memory Device Driver (OS)
mapped I/0 (MMIO)

* NIC performs Direct Memory
Access (DMA) of network @ S —
packets into kernel memory

* NIC raises interrupt to indicate O
reception of packets NIC

 We will discuss only RX path here (hardware)




Interrupt handling

* How are interrupts handled?

e CPU is running process P and interrupt arrives
* CPU saves context of P, runs OS code to handle interrupt in kernel mode

* Restore context of P, resume P in user mode

* Interrupt handling code is part of OS device drivers
* Network device drivers handle interrupts from NICs

User Program Running: ; ——> user mode
_— ©Interrupt Handler :
OS Running: \ P X kernel mode
Time: : : >
X Y

Image credit: Dive into Systems, by Mathews, Newhall, Webb



Network Interrupt handling

* Interrupt handling from NIC involves lot of work
* Processing information about the network, congestion control, ...

* To avoid excessive disruption to interrupted process, NIC interrupt
handling split into two parts

* Top half interrupt handler acknowledges interrupt, does minimal
processing, disables future interrupts

* Top half schedules a kernel process for full interrupt handling, called
bottom half interrupt handler

* Bottom half processes all packets received so far, re-enables interrupts



Device driver rings

* NIC and kernel exchange information about packets via TX/RX “rings”

* RX ring: circular array containing pointers to received packets

* NIC does DMA, updates pointer in RX ring, interrupts
* Top half does minimal processing, schedules bottom half
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Bottom half interrupt handler

* Bottom half or ksoftirq process scheduled when CPU is free

* Processes all packets collected in the RX ring since the last round

» Allocates socket buffer (sk_buff) structure for each packet

» Socket buffer contains pointer to different fields (headers) in the packet
Kernel Memory

* Interrupt + ksoftirg can run on multiple cores
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Network layer processing

* Bottom half interrupt handler performs all the network processing
* Parsing and checking packet headers in sk_buff structure

* IP routing, TCP reliability and congestion control algorithms (you will learn
more about this in the networking course)
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Packet copy to sockets

* Packet headers Socket
(port number) y
used tO map User Memory
received packet T T
to socket o Allocate

TCP/IP processing - <kb_buff : .@

e On read from

application, CPU 0
packet payload /@% N T
copied from |

kernel memory to Process X é
softirg
user memory

Kernel Memor



Overheads of the Linux network stack

* Interrupt handling, transition across user and kernel mode
* Context switching from application to ksoftirg
* Packet copy from kernel to user space
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Need for alternate fast network 1/O tchniques

Max throughput possible is ~15 Gbps [1]

N
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Multi-Core Application
(6 threads)

Host Kernel Network Stack

100 Gbps NIC

Throughput << NIC Line Rate &

[1] T. Hgiland-Jgrgensen et al., “The eXpress data path: fast programmable packet processing in the operating system kernel”

Multi-threaded applications cannot
easily achieve line rate in modern high-
speed NICs, especially with small-sized
packets

* Techniques to improve processing

speed include kernel bypass techniques
(directly DMA packets into user space)
and using polling-mode device drivers
Possible to process 100s of Gbps easily
in software using such techniques
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Fast 1/0 techniques
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High packet processing overheads
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In-Kernel Program Offload (eBPF)
Push some extra application
functionality into the kernel
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Kernel Bypass (DPDK / AFXDP)
Get packets directly into user
space application




In-kernel packet processing with eBPF

* eBPF (extended Berkeley Packet Filter) is a way to embed custom
packet processing code in the kernel safely at specific hook points
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Kernel bypass with DPDK

mbuff

mbuff

* Another widely used kernel bypass
mechanism E—— t‘ﬂ?ﬁ
Application ‘. ’

Userspace

* Poll mode driver in userspace, kernel LA

driver is just passthrough

* Polls device, fetches and processes batches ‘
( UIO/VFIO )

Kernel

* Packet buffers in user space pre-allocated

buffers, huge pages

* Pros: Minimal involvement of kernel,
high packet processing rates

e Cons: kernel tools don’t work anymore,
hard to co-exist with other apps

of packets
NIC




Kernel bypass with AF_XDP

* Regular sockets (AF_INET) receive
packets after TCP/IP processing

 AF_XDP is special type of socket that can
receive packets directly from XDP hook

* Packet DMA directly into user space (with
driver support), no extra copy, no kernel
stack processing overhead

* Program at XDP hook notifies user space app
via poll/interrupt mechanisms

* Higher throughputs possible, while
allowing kernel some control

User Space
Application
AF_XDP socket

User space

Kernel space

Application
notified via @
poll/interrupts

XDP

NIC

DMA into
user
program



eBPF, XDP, AF XDP —the connection

* eBPF programs can be safely embedded inside specific hook points to
add custom functionality to kernel network stack

* eBPF program at XDP hook can also redirect packets to AF_XDP
sockets for processing inside userspace application
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Another problem: memory access bottleneck

* Memory wall: DRAM speeds have not increased as much as CPU or
network hardware

* On high speed network links, only few nanoseconds budget per
packet, but accessing main memory takes hundreds of nanosec
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Direct Cache Access / DDIO

 Direct Cache Access (Intel’s DDIO): NIC writes packet directly into CPU
caches, and does not DMA into main memory

* User/kernel software can access packet quickly from cache
* Leads to much faster network packet processing
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