
Mythili Vutukuru
CSE, IIT Bombay

Introduction to Operating Systems
(Background)

What is a computer system?
• Software

• User programs (instructions and data) to accomplish some tasks
• System software like operating systems

• Hardware
• CPU (registers, ALU, caches, …)
• Main memory (DRAM)
• I/O devices, secondary storage…

• Software written in high-level languages is compiled into binary files
(executables) containing instructions that the CPU hardware can execute

• Operating systems written in high-level language like C
• Please be comfortable with C before proceeding further in this course

Running a program
• What happens when you run a C program?

• C code translated into executable by compiler in multiple steps (see below)
• Executable loaded from disk to main memory when program starts
• CPU fetches program instructions from main memory and executes them

Image credit: CSAPP

Hardware Organization

Image credit: CSAPP

executable loaded in memory
when program runs

CPU ISA

• Every CPU has a well-defined set of
• Instructions that the hardware can execute
• Registers for temporary storage of data within the CPU

• Instructions and registers specified by ISA = Instruction Set Architecture
• Specific to CPU manufacturer (e.g., Intel CPUs follow x86 ISA)

• Registers: special registers (specific purpose) or general purpose
• Program counter (PC) is special register, has memory address of the next

instruction to execute on the CPU
• General purpose registers can be used for anything, e.g., operands in

instructions
• Size of registers defined by architecture (32 bit / 64 bit)

CPU instructions
• Some common examples of CPU instructions

• Load: copy content from memory location  register
• Store: copy content from register memory location
• Arithmetic and logical operations like add: reg1 + reg2  reg3, compare, ..
• Jump: change value of PC
• Call: invoke a function

• Simple model of CPU
• Each clock cycle, fetch instruction at PC, decode, access required data, execute,

update PC, repeat
• PC increments to next instruction, or jumps to some other value

• Many optimizations to this simple model
• Pipelining: run multiple instructions concurrently in a pipeline
• Many more in modern CPUs to optimize #instructions executed per clock cycle

Memory/storage hierarchy
• Program executable

loaded from secondary
storage to main memory

• When CPU runs program,
recently accessed
instructions and data
stored in CPU caches
(faster access than DRAM)

• Registers in CPU provide
temporary storage, e.g.,
hold operands

Image credit: Dive Into Systems

Memory/storage hierarchy

• Hierarchy of storage elements which store instructions and data
• CPU registers (small number, accessed in <1 nanosec)
• Multiple levels of CPU caches (few MB, 1-10 nanosec)
• Main memory or RAM (few GB, ~100 nanosec)
• Hard disk (few TB, ~1 millisec)

• Hard disk is non-volatile storage, rest are volatile
• Hard disk stores files and other data persistently

• As you go down the hierarchy, memory access technology becomes
cheaper, slower, less expensive

• CPU caches transparent to software, managed by hardware
• Software only accesses memory, doesn’t know if served from cache or DRAM

Image credit: Dive Into Systems

Parts of program memory
• The memory of a running program in

DRAM has the following components
• Compiled code (instructions)
• Compile-time data (global/static variables)
• Runtime data on stack (function arguments,

local variables, …)
• Runtime data on heap (dynamically allocated

memory via malloc, …)
• All instructions and data are assigned

memory addresses, based on their
location in memory

• Main memory contains user programs +
code/data of OS

Image credit: Dive Into Systems

Example: memory allocation
• When is memory allocated for the various parts of this

program?
• Memory for global variable “g” allocated when executable

loaded into memory at start of execution
• Memory for function arguments and local variables (a, b, x,

y, z, …) allocated (“pushed”) on stack when the
corresponding function is called

• Why not allocate memory at start of program? Because we do not
know if/how many times the function will be called at runtime

• Function variables “popped” from stack when function returns

• Memory requested dynamically via malloc is allocated on
the heap at runtime, when malloc is invoked

int g;

int increment(int a) {
int b;
b = a+1;
return b;

}

main() {
int x, y;
x = 1;
y = increment(x);

int *z = malloc(40);

}

int g;

int increment(int a) {
int b;
b = a+1;
return b;

}

main() {
int x, y;
x = 1;
y = increment(x);

int *z = malloc(40);

}

Pointers and addresses
• A pointer variable contains the memory address of another variable
• Note that these addresses are only logical addresses, and not the

actual physical addresses in DRAM (why? more later)
• Pointer variables contain space to only store the address, and the

variable being pointed to must be declared/allocated separately
• Ensure pointer contains valid address before accessing it

Image credit: Dive Into Systems

Stack vs. heap
• Functions like malloc allocate

memory on heap and return start
address of allocated chunk

• This heap address is stored in a
pointer variable, which may be a
local variable in a function, and
hence located on the stack

• Dynamically allocated memory on
heap must be explicitly freed up (in
languages like C), else memory leak

• Stack memory automatically popped
when function returns

Image credit: Dive Into Systems

What happens on a function call?

• Function arguments allocated on stack (in
reverse order, by convention)

• Old PC (return addr) pushed on stack, PC
jumps to function code

• Local variables allocated on stack
• Some register context saved too (more later)
• Now, new stack frame is ready on stack
• Function code runs using data on stack
• When function returns, all of the function

memory is popped off the stack

Arg 1

…..

Arg N

Ret addr

Local var

…Old top of stack

New top of stack

Stack frame
pushed when
function is
invoked

