Introduction to Operating Systems
(Background)

Mythili Vutukuru
CSE, IIT Bombay

What is a computer system?

 Software
» User programs (instructions and data) to accomplish some tasks
» System software like operating systems

 Hardware
* CPU (registers, ALU, caches, ...)
* Main memory (DRAM)
* |/O devices, secondary storage...

» Software written in high-level languages is compiled into binary files
(executables) containing instructions that the CPU hardware can execute

* Operating systems written in high-level language like C
* Please be comfortable with C before proceeding further in this course

Running a program

* What happens when you run a C program?
» C code translated into executable by compiler in multiple steps (see below)

* Executable loaded from disk to main memory when program starts

e CPU fetches program instructions from main memory and executes them

hello.c

\ 4

Source
program
(text)

Pre-
processor

(cpp)

hello.i

>

Image credit: CSAPP

Modified
source
program
(text)

Compiler

hello.s

printf.o

Assembler

L.

hello.o

B
L

foel)

Assembly
program
(text)

" (as)

Relocatable
object
programs
(binary)

Linker
(1d)

hello

[

Executable
object
program
(binary)

Hardware Organization

CPU

Register file

PC

V| ALU

1r

-

Bus interface

K=

P

-,
-

System bus

executable loaded in memory

Memory bus when program runs

VO
bridge

ﬁ

Main
memory

S

USB Graphics
controller adapter
Mouse Keyboard Display

Image credit: CSAPP

I/O bus |

HH=>

Expansion slots for
other devices such

Disk

controller

as network adapters

-
Disk

hello executable
stored on disk

CPU ISA

* Every CPU has a well-defined set of
* Instructions that the hardware can execute
* Registers for temporary storage of data within the CPU

* Instructions and registers specified by ISA = Instruction Set Architecture
 Specific to CPU manufacturer (e.g., Intel CPUs follow x86 ISA)
* Registers: special registers (specific purpose) or general purpose

* Program counter (PC) is special register, has memory address of the next
instruction to execute on the CPU

* General purpose registers can be used for anything, e.g., operands in
instructions

* Size of registers defined by architecture (32 bit / 64 bit)

CPU instructions

* Some common examples of CPU instructions
* Load: copy content from memory location = register
* Store: copy content from register 2 memory location
* Arithmetic and logical operations like add: regl + reg2 > reg3, compare, ..
* Jump: change value of PC
 Call: invoke a function

* Simple model of CPU

* Each clock cycle, fetch instruction at PC, decode, access required data, execute,
update PC, repeat

* PCincrements to next instruction, or jumps to some other value

* Many optimizations to this simple model
* Pipelining: run multiple instructions concurrently in a pipeline
 Many more in modern CPUs to optimize #instructions executed per clock cycle

Memory/storage hierarchy

° Program executable CPU | Memory Module Slots

loaded from secondary
Memory Bus

storage to main memory

* When CPU runs program,
recently accessed
instructions and data
stored in CPU caches
(faster access than DRAM)

* Registers in CPU provide
temporary storage, e.g.,
hold operands

I/O Bus (e.g., PCl Express)

Image credit: Dive Into Systems

Memory/storage hierarchy

* Hierarchy of storage elements which store instructions and data
e CPU registers (small number, accessed in <1 nanosec)
* Multiple levels of CPU caches (few MB, 1-10 nanosec)
* Main memory or RAM (few GB, ~100 nanosec)
* Hard disk (few TB, ~1 millisec)

* Hard disk is non-volatile storage, rest are volatile
* Hard disk stores files and other data persistently

* As you go down the hierarchy, memory access technology becomes
cheaper, slower, less expensive

* CPU caches transparent to software, managed by hardware
* Software only accesses memory, doesn’t know if served from cache or DRAM

1 cycle
Registers On CPU

Primary
- Storage
/ Caches \ 10 cycles g
Faster Access, —_
Higher Cost N
Main Memory 100 cycles B

Slower Access,
Lower Cost

~1 M cycles
Flash Disk

Secondary

10 M cycles Stopge

Traditional Disk

| / Remote Secondary Storage (e.g., Internet) \

The Memory Hierarchy

o

Image credit: Dive Into Systems Storage Capacity

Parts of program memory

* The memory of a running program in
DRAM has the following components
* Compiled code (instructions)
* Compile-time data (global/static variables)

* Runtime data on stack (function arguments,
local variables, ...)

* Runtime data on heap (dynamically allocated
memory via mallog, ...)
 All instructions and data are assigned

memory addresses, based on their
location in memory

* Main memory contains user programs +
code/data of OS

Image credit: Dive Into Systems

... Memory addresses . .

max:

Parts of Program Memory

Operating system

Code:
function instructions stored here

Data:
global variables stored here

Heap:
dynamically allocated memory
grows as program allocates memory

Il
i

Stack:

local variables and parameters stored here
Grows as program calls functions
Shrinks on return from function

: intg;
Example: memory allocation

int increment(int a) {
* When is memory allocated for the various parts of this int b;
program? b =a+1;

« Memory for global variable “g” allocated when executable return b;

loaded into memory at start of execution i

* Memory for function arguments and local variables (a, b, x,
Yy, Z, ...) allocated (“pushed”) on stack when the
corresponding function is called

* Why not allocate memory at start of program? Because we do not
know if/how many times the function will be called at runtime

* Function variables “popped” from stack when function returns

y = increment(x);

. _ . int *z = malloc(40);
 Memory requested dynamically via malloc is allocated on

the heap at runtime, when malloc is invoked

Pointers and addresses

* A pointer variable contains the memory address of another variable

* Note that these addresses are only logical addresses, and not the
actual physical addresses in DRAM (why? more later)

 Pointer variables contain space to only store the address, and the
variable being pointed to must be declared/allocated separately

* Ensure pointer contains valid address before accessing it

ptr = &x;
*ptr = 8;

. addr of x <z B

Image credit: Dive Into Systems

Stack vs. heap

 Functions like malloc allocate
memory on heap and return start
address of allocated chunk

* This heap address is stored in a
pointer variable, which may be a
local variable in a function, and
hence located on the stack

* Dynamically allocated memory on
heap must be explicitly freed up (in
languages like C), else memory leak

e Stack memory automatically popped
when function returns

Image credit: Dive Into Systems

int *arr;
char *c_arr;

arr = malloc(sizeof(int) * 208);

c_arr = malloc(sizeof(char) * 18);

main:

012 19
arr:| addrin heap — |
Duls2in:008
c_arr:| addrin heap — |
Stack Heap

What happens on a function call?

e Function arguments allocated on stack (in
reverse order, by convention)

e Old PC (return addr) pushed on stack, PC
jumps to function code

* Local variables allocated on stack

* Some register context saved too (more later)
* Now, new stack frame is ready on stack

* Function code runs using data on stack

 When function returns, all of the function
memory is popped off the stack

New top of stack

4»
Local var
Stack frame Ret addr
pushed when
function is Arg 1
invoked | |
Arg N
Old top of stack

