
Mythili Vutukuru
CSE, IIT Bombay

Introduction to Operating Systems

Computer systems

• Real-world computer systems are complex
• Multiple components/tiers distributed across several machines
• Handle high number of user requests efficiently, reliably

• Example: consider an e-commerce application
• Clients access multi-tier applications hosted in data centers or public clouds
• Front-end components (e.g., web servers) receive user requests, reply to user with

responses, consult various application servers to build responses
• App servers contain business logic to process different types of user requests
• Application data is stored in several database servers in the backend
• Each of these components is built over one or more computers

Example: e-commerce system

Front end
Web servers
Front end
Web servers

User profile managementUser profile management User profile databaseUser profile database

Product managementProduct management

Shopping cart maintenanceShopping cart maintenance

Order management (purchase, billing,
shipping, cancellations, returns)
Order management (purchase, billing,
shipping, cancellations, returns)

Recommendation AI/ML algorithmsRecommendation AI/ML algorithms

Product catalogueProduct catalogue

Shopping cart informationShopping cart information

Order databaseOrder database

Message QueueMessage Queue

Recommendation databaseRecommendation database

User
Requests

Fetch user billing infoUpdate product catalogue

The building blocks

• A single computer system is the building block for all large, distributed
computer systems that run real world applications

• What does a computer system contain?
• Hardware: CPU, memory, I/O devices, …
• System software: Operating System (OS), …
• User software: user applications (browser, email client, games, application

servers, databases, AI/ML algorithms, …)

• We must understand the basic building blocks of a single system
before we can build large-scale systems for real applications

Why study operating systems?

• Knowledge of hardware (architecture) + system software (OS), and
how user programs interact with these lower layers, is essential to
writing “good” (high performance, reliable) user programs

• What exactly happens when you run a user program?
• How to make your program run faster and more efficiently?
• How to make your programs more secure, reliable, tolerant to failures?
• Why is your program running slowly and how to fix it?
• How much CPU/memory is your program consuming, and why?

• OS expertise is one of the most important skills when building high
performance, robust, complex real life systems

Beyond OS to real systems and future courses

• Architecture + OS: Basic foundation to understand how a user
program runs on a single machine

• Networking: How programs talk to each other across machines
• Databases and data storage: How applications store data efficiently

and reliably across one or more machines
• Performance engineering: how to make programs run faster
• Distributed systems: How multiple applications across multiple

machines work together to perform a useful task reliably
• Virtualization, cloud computing, security, …

What is an operating system?

• Middleware between user programs and system hardware
• Not user application software but system software
• Example: Linux, Windows, MacOS

• Manages computer hardware: CPU, main memory, I/O devices (hard
disk, network card, mouse, keyboard etc.)

• User applications do not have to worry about low-level hardware details

• Operating system has kernel + other extra useful software
• Kernel = the core functionality of the OS
• Other useful programs = shell, commands on shell, other utilities that help

users interact with the OS

7

Image credit: Dive into Systems

What is an operating system?

History of operating systems

• Started out as a library to provide common functionality to access
hardware, invoked via function calls from user program

• Convenient to use OS instead of each user writing code to manage hardware
• Centralized management of hardware resources is more efficient

• Later, computers evolved from running a single program to multiple
processes concurrently

• Multiple untrusted users must share same hardware

• So OS evolved to become trusted system software providing isolation
between users, and protecting hardware

• Multiple users are isolated and protected from each other
• System hardware and software is protected from unauthorized access by users

9

Key concepts in operating systems

• The OSTEP textbook identifies 3 concepts that are fundamental to OS:
• Virtualization: OS gives a “virtual” or logical view of the hardware to

the users, hiding the messy real “physical” view, so that each
user/program has the illusion of having entire hardware to itself

• Concurrency: OS runs multiple user programs at the same time, while
sharing the system resources across users efficiently and securely

• Persistence: OS stores user data persistently on external I/O devices
• We will now understand these concepts and other OS terminology

What is a program?

• User program = code (instructions for CPU) + data to do a specific task
• Stored program concept

• User programs stored in main memory (instructions + data)
• Memory is byte-addressable: data accessed via memory address / location / byte#
• CPU fetches code/data from memory using address, and executes instructions

• CPU runs processes = running programs
• Modern CPUs have multiple cores for parallel execution

• Each core runs one process at a time each
• Modern CPUs have hyper-threading (one physical core can appear as multiple

logical cores by sharing hardware, and hence run multiple processes at once)

Running a program

• What happens when you run a C program?
• C code translated into executable by compiler
• Executable file stored on hard disk (say, “a.out”)
• When executable is run, a new process is created
• Process allocated space in RAM to store code and data (compile time data

allocated at start, runtime data allocated as program runs)
• CPU starts executing the instructions of the program

• When CPU is running a process, CPU registers contain the execution
context of the process

• PC points to instruction in the program, general purpose registers store data
in the program, and so on

Role of OS in running a process
• Allocates memory for new

process in RAM
• Loads code, data from disk

executable
• Allocates memory for stack, heap

• Initializes CPU context
• PC points to first instruction

• Process starts to run
• CPU runs user instructions now
• OS is out of picture, but steps in

later as needed

13
Image credit: Dive into Systems

Concurrent execution & CPU virtualization
• CPU runs multiple programs concurrently

• OS runs one process for a bit, then switches to another, switches again, ...

• How does OS ensure correct concurrent execution?
• Run user code of process A for some time
• Pause A, save context of A, load context of B: context switching
• Run user code of process B for some time
• Pause B, save context of B, restore context of A, run A

• Every process thinks it is running alone on CPU
• Saving and restoring context ensures process sees no disruption

• In this manner, OS virtualizes CPU across multiple processes
• OS scheduler decides which process to run on which CPU at what time

Context switching

Image credit: CSAPP

Memory image of a process

• Memory image of a process: code+data of process in memory
• Code: CPU instructions in the program
• Compile-time data: global/static variables in program executable
• Runtime data: stack+heap for dynamic memory allocation at runtime

• Heap and stack can grow/shrink as process runs, with help of OS
• Stack pointer CPU register keeps track of top of stack

• Memory image also contains other code (not directly part of the
program) that the process may want to execute, e.g., programming
language libraries, kernel code and data, and so on (more later)

Address space of a process

• OS gives every process the illusion that its memory image is laid out
contiguously from memory address 0 onwards

• This view of process memory is called the virtual address space

• In reality, processes are allocated free memory in small chunks all over
RAM at some physical addresses, which the programmer is not aware of

• Pointer addresses printed in a program are virtual addresses, not physical

• When a process accesses a virtual address, OS arranges to retrieve data
from the actual physical address

• OS virtualizes memory for all processes, gives illusion of a virtual
address space to processes

Image credit: OSTEP

Isolation and privilege levels
• How to protect concurrent processes from one another?

• Can one process mess up the code or data of another process?
• When we virtualize, how do we share safely?

• Modern CPUs have mechanisms for isolation
• Privileged and unprivileged instructions

• Privileged instruction access (perform) sensitive information (actions)
• Regular instructions (e.g., add) are unprivileged

• CPU has multiple modes of operation (Intel x86 CPUs run in 4 rings)
• Low privilege level (e.g., ring 3) only allows unprivileged instructions
• High privilege level (e.g., ring 0) allows privileged instructions also

User mode and kernel mode

• User programs runs in user (unprivileged) mode
• CPU is in unprivileged mode, executes only unprivileged instructions

• OS runs in kernel (privileged) mode
• CPU is in privileged mode, can execute both privileged and unprivileged

instructions
• CPU shifts from user mode to kernel mode and executes OS code

when following events occur:
• System calls: user request for OS services
• Interrupts: external events that require attention of OS
• Program faults: errors that need OS attention

• After performing required actions in kernel mode, OS returns back to
user program, CPU shifts back to user mode

System calls

• When user program requires a service from OS, it makes a system call
• Example: Process makes system call to read data from hard disk
• Why? User process cannot run privileged instructions that access hardware,

to prevent one user from harming another
• CPU jumps to OS code that implements system call, and returns back to user

code after system call completes

• Normally, user program does not call system call directly, but uses
language library functions

• Example: printf is a function in the C library, which in turn invokes the system
call to write to screen

Interrupts

• In addition to running user
programs, CPU also has to handle
external events (e.g., mouse click,
keyboard input)

• Interrupt = external signal from
I/O device asking for CPU’s
attention

• Example: program issues request
to read data from disk, and disk
raises interrupt when data is
available (instead of program
waiting for data)

Image credit: Dive into Systems

System calls vs. interrupts

Image credit: Dive into Systems

Interrupt handling
• How are interrupts handled?

• CPU is running process P and interrupt arrives
• CPU saves context of P, runs OS code to handle interrupt (e.g., read keyboard

character) in kernel mode
• Restore context of P, resume P in user mode

• Interrupt handling code is part of OS
• CPU runs interrupt handler of OS and returns back to user code

Image credit: Dive into Systems

I/O devices
• CPU and memory

connected via high speed
system (memory) bus

• I/O devices connect to the
CPU and memory via other
separate buses

• Interface with external world
• Store user data persistently

• OS manages I/O devices on
behalf of the users

25
Image credit: OSTEP

Device controller and device driver

• I/O device is managed by a device controller
• Microcontroller which communicates with CPU/memory over bus

• Device specific knowledge required to correctly communicate with
device controller to handle I/O operations

• Done by special software called device driver
• Part of operating system code

• Functions performed by kernel device driver
• Initialize I/O devices
• Start I/O operations, give commands to device (e.g., read data from hard disk)
• Handle interrupts from device (e.g., disk raises interrupt when data is ready)

Image credit: Dive into Systems

