Paging

Mythili Vutukuru
CSE, IIT Bombay

Paging

0
reserved for OS page frame 0 of physical memory
16
(unused) page frame 1 0
- (page 0 of the address space) Page to fra me
page 3 of AS page frame 2 5
e 1 mappings:
page 0 of AS (page 1)
= ()
(unused) page 2
. 0->3
page 2 of AS (page 3) 1 9 7
96
(unused) 2 9 5
112 .
ol S W i Virtual address space 322
128

Physical address space

Image credit: OSTEP 2

Page table

Bege table. age frame 0
* Per process data structure to 5 3752 .
translate virtual address (VA) to (unused) page frame 1
. 32
physical address (PA) R S—
* Stores frame numbers for all =
. page 0 of AS page frame 3
pages of a process in array 64
e [3 75 2] corresponding to pages - R SRS
0 to 3 of the process page 2 of AS page frame 5
. 96
 Part of OS memory (in PCB) (Ghused) e i 8
112
* MMU has access to page table R — N —
of current process, uses it for 128
address translation View of physical memory

Image credit: OSTEP

Address translation using paging

e Address translation performed by MMU using
page table

* Most significant bits (MSB) of VA give virtual
page number, least significant bits (LSB) give
offset within page

» Page table maps virtual page number (VPN) to
physical frame number (PFN)

* MMU maps VPN to PFN, adds offset to get PA

 Location of page table of currently running
process known to MMU

* Written into special CPU register by the OS, updated
on every context switch/page table change

VPN offset
Virtual
Address 0 1 0 ! 0 L
Address
Translation
Physical
Address | ! i |4 [@) 2 | | A
PFN offset

Figure 18.3: The Address Translation Process

Image credit: OSTEP

Page table

|

CPU

MMU

Virtual address

Physical address

Virtual address space

Page

S

Fetch address 5KB

Fetch address Y+1KB

Page number

Offset

1 Using page table

Frame number

Offset

Physical address space

Address = X

Address =Y

Address =7

Page table structure

* Page table is an array, where i-th entry contains the information
(physical frame number etc) of the i-th page of the process

* Page table has entries for all pages in address space, even those for
which there is no physical frame number
* Itis an array with fixed number of entries, not a dynamic data structure

* Why this design? Why not a dynamic data structure whose size depends on
number of used pages? (Hint: think of effort to traverse the data structure in

MMU hardware)

* Page table structure fixed for a given architecture, as the logic to
traverse the page table is baked into MMU hardware

Page table entry

* Page table is array of page table entries, one per page of process

* i-th page table entry (PTE) contains physical frame number and other
details (permissions, status, ..) of i-th page of process
 Valid: is this page in use by process (not all virtual addresses are used by process)
 Various permission bits (more later)
e Other status bits: present, dirty, accessed (more later)

PTEO [0 //' o7

1 — VP 4

; — PP3

0 —

1 o~

0 e

0 - Page table contains physical frame
PTE 7 1 o

Image credit: CSAPP numbers for valid pages

Address translation in MMU

VIRTUAL ADDRESS
Page table n-1 p p-1
base register irtual page number (VPN) offset
(PTBR)
Valid Physical frame number (PFN)
o o 9 Page
The VPN acts table
asindexinto
the page table
If valid=0
TRAP
m-1 v p p-1

Physical frame number (PFN) | offset

PHYSICAL ADDRESS
Image credit: CSAPP

Size of page tables

B= byte b bit

* What is typical size of page table in a 32-bit system?

e 2732 = 4GB virtual address space

* Assume page size = 4KB = 2”712

* Number of PTEs = number of pages in virtual address space =
(2232/2712) =2720=1M

* |f each PTE is 4 bytes, page table size = 4 bytes * 1M entries = 4MB

* How are page tables stored in memory?
* All memory is only allocated in 4KB chunks, so how to store 4MB?

* Solution: split page table into pages (much like memory image), use
another page table to keep track of original page table!

Two-level page table in 32-bit systems

* 4MB page table split into 1024 chunks of 4KB each (to fit in page)
1M PTEs split across 1024 pages, each containing 1024 PTEs
* Physical frame numbers of these 1024 chunks stored in an outer page
table or page directory
* 4 byte page table entry each, so outer page directory fits in one page here
* Page table now has two levels

* Quter page table (page directory) has physical frame numbers of 1024 “inner”
page table pages

* Each inner page table has physical frame numbers (PTEs) of 1024 pages of the
process virtual address space

Outer page directory

PTEO

PTE1

PTE 2

PTE 3

PTE 4

PTE S

PTE 6

PTE 7

PTE 8

1024 PTEs

Fits in one page

Image credit: CSAPP

Inner page tables

PTEO

PTE 1023

PTE 1024

PTE 2047

MPTE“.

PTE ...

1024 inner page tables
Each with 1024 PTEs

VPO

10

VP 1023

VP 1024

VP 2047

Virtual address space can have
4GB memory = 1M pages

Each PTE contains PFN of one page of process

Inner page tables on demand

* Note: not all inner page tables need to be created always, only those
with at least one valid entry needed

* Example: Process with 2K pages of code+data, 6K + 1023 unallocated
pages in address space, then one page allocated for stack
 First two inner page tables are allocated, hold the 2K valid PTEs

* Next 6 inner page tables are not created, the corresponding entries in outer
page directory are invalid / null

* In next inner page table, 1023 invalid entries and one valid PTE containing frame
number of stack page

 Remaining inner page tables not created, corresponding outer page directory
entries are invalid

Inner page tables

Outer page directory

Image credit: CSAPP

PTEO / PTE O
PTE1
PTE 2 (null) PTE 1023
PTE 3 (null)
PTE 4 (null) PTE 1024
PTE 5 (null)
PTE 6 (null) PTE 2047
PTE 7 (null)
PTE 8

1023 null
(1K - 9) PTEs
null PTEs bTE

/

N
VPO ™
VP 1023 2K allocated VM pages
VP 1024 for code and data
VP 2047 Y,
N
Gap > 6K unallocated VM pages
/
1023
unallocated 1023 unallocated pages
pages
VP .. 1 allocated VM page

for the stack

Address translation in 2-level page table

* Virtual address of 32 bits = 20 bit page number + 12 bit offset

e 20 bits index into a single page table is now used as

* Most significant 10 bits index into page directory, locate PTE of one of the
1024 inner page tables contain our desired address

* Next 10 bits index into inner page table to locate PTE of page

* Locate PTE, computer physical address using frame number and 12-
bit offset into page

* MMU “walks” the multiple levels of the page table to translate
virtual addresses

Multi-level page tables

* What if outer page directory does not fit into one page?

 Store page directory across many pages, use yet another page table to store
frame numbers of page directory pages

* This can go on until outermost page table fits in one page
* Example: 48-bit CPU, 4KB pages, 8 byte page table entries

2748 bytes in virtual address space = 2236 pages for each process
Each page can store 4KB/8 = 279 = 512 page table entries
Innermost level (actual page table) has 2236 page table entries = needs 2727 pages

Innermost page table split into multiple pages = 2227 page table entries to track
innermost page table pages

Next level of page table stores 2227 page table entries = needs 2718 pages
Next level stores 2*18 page table entries = needs 2729 = 512 pages
Outermost level can store all 512 page table entries in 1 page

Address translation with 4-level page table

* Example: 48-bit CPU, 4KB pages, 8 byte page table entries
* 4 level page table required

* Outermost page directory has 512 entries, containing frame numbers of next level
page table pages, each of those contain frame numbers of next level page table, ...

* Page table at i-th level has frame numbers of 512 (i+1)-th level page table pages

* How to translate VA to PA?
e 48-bit VA = 36 bits + 12 bit offset
» 36 bits = 9 bit offset into each of the 4 levels of page table

* |f TLB miss, MMU has to access 4 different memory locations for 4 levels of
page table, in order to translate one VA to PA

* MMU page table walks become even longer, TLB hit rate is critical

Address translation with multi-level page table

VIRTUAL ADDRESS

n-1

p-1 0
1+ VPN 1 VPN 2 » VPN k offset
& J
N
Level 1 Level 2 Level k
page table page table page table
> PFN F—
m-1 p-1 0
A\ 4
PFN offset

PHYSICAL ADDRESS
Image credit: CSAPP

Revisiting process virtual address space

* What should virtual address space/page table of process have? Any
memory that the process needs to access during its execution

* Its own memory image: code, data, stack, heap
 Other common memory it needs to access: shared language libraries, OS

* Why? MMU allows access to memory only via virtual addresses
* Can only access physical memory mapped in page table at some virtual address
* So all physical memory needed by process should be mapped into address space

* OS binary image (kernel code, data) is mapped into the virtual address
space of every process at addresses not used by process (high VA)

* Why is this done? Easy to jump to OS code during a trap

A subtle point

e O ting Syst
perating System
- . (code, data, efc.) Program Code

* OS is not a separate process (iee)

. ' 28KB Hosp
with its own address space 1 Proicess O
(code, data, etc.)

* Instead, OS code is part of the ™ |7 “eromesss - l
address space of every = 7Z 7
prOCGSS S ; g‘roge?s At)

* A process sees OS as part of e 7 ‘
its code (e.g., like a library) e 7 —

. . 512KB

* During trap, process jumps to

high virtual addresses and 05

executes OS code

Image credit: OSTEP

OS is part of address space of every process

* OS code/data assigned high virtual addresses
* Compiler ensures high virtual addresses not used by user code

» OS virtual addresses are mapped to physical addresses of OS via page
table entries of every process

* There is only one copy of OS code/data in RAM
* Loaded into RAM at low physical addresses during system bootup

* Page tables of all processes map to same OS physical addresses
e Same high virtual addresses map to same physical addresses of OS code

Page-level isolation and security

* How is OS code/data protected from illegal access by user?

* Page table has permissions for every memory page
* Whether read/write or read-only (code pages are read-only)
 Whether page can be accessed in user mode or kernel mode

* Page table mappings for OS code are protected to allow access only
when CPU is in kernel mode
* CPU in user mode cannot access high virtual addresses of OS code
* CPU in kernel mode (after trap instruction) can access OS code/data

* MMU traps to OS if any violation detected during memory access,
ensures user programs can only access memory they are permitted to
access

Example: page-level protection using page tables

* Example: process P1 and P2 each have one read-only page, one read-
write page, and one page with OS code accessible in kernel mode

P1

P2

Image credit: CSAPP

VP O:
VP 1:
VP 2:

VP O:
VP 1:
VP 2:

kernel READ WRITE Address

No Yes No PFN 2 L
No Yes Yes PEN 4 —
Yes Yes Yes PFN O —

Page tables with permission bits

kernel READ WRITE Address

No Yes No PFN 11 o—
No |Yes |Yes |PFNG6 ',
Yes Yes Yes PFN O J

Physical memory

PFO

PF 2

PF 4

PF 6

PF11

