
Mythili Vutukuru
CSE, IIT Bombay

Paging

Paging

2Image credit: OSTEP

Page to frame
mappings:

0  3
1  7
2  5
3  2Virtual address space

Physical address space

Page table
• Per process data structure to

translate virtual address (VA) to
physical address (PA)

• Stores frame numbers for all
pages of a process in array

• [3 7 5 2] corresponding to pages
0 to 3 of the process

• Part of OS memory (in PCB)
• MMU has access to page table

of current process, uses it for
address translation

3

View of physical memory

Image credit: OSTEP

Address translation using paging

• Address translation performed by MMU using
page table

• Most significant bits (MSB) of VA give virtual
page number, least significant bits (LSB) give
offset within page

• Page table maps virtual page number (VPN) to
physical frame number (PFN)

• MMU maps VPN to PFN, adds offset to get PA
• Location of page table of currently running

process known to MMU
• Written into special CPU register by the OS, updated

on every context switch/page table change
Image credit: OSTEP

Page number Offset

Frame number Offset

Virtual address

Physical address

Using page table

Page

CPU
Fetch address 5KB

Fetch address Y+1KB

Virtual address space Physical address space

Address = Y

Address = Z

Address = X

MMU

Page table

Page table structure

• Page table is an array, where i-th entry contains the information
(physical frame number etc) of the i-th page of the process

• Page table has entries for all pages in address space, even those for
which there is no physical frame number

• It is an array with fixed number of entries, not a dynamic data structure
• Why this design? Why not a dynamic data structure whose size depends on

number of used pages? (Hint: think of effort to traverse the data structure in
MMU hardware)

• Page table structure fixed for a given architecture, as the logic to
traverse the page table is baked into MMU hardware

Page table entry
• Page table is array of page table entries, one per page of process
• i-th page table entry (PTE) contains physical frame number and other

details (permissions, status, ..) of i-th page of process
• Valid: is this page in use by process (not all virtual addresses are used by process)
• Various permission bits (more later)
• Other status bits: present, dirty, accessed (more later)

PTE 0

PTE 7
Page table contains physical frame
numbers for valid pages

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

PP 0
VP 2
VP 1

PP 3

Image credit: CSAPP

Address translation in MMU

Virtual page number (VPN) offset

VIRTUAL ADDRESS

Physical frame number (PFN)

PHYSICAL ADDRESS

0p–1pm–1

n–1 0p–1pPage table
base register
(PTBR)

If valid=0
TRAP

Valid Physical frame number (PFN)

The VPN acts
as index into
the page table

Page
table

offset

Image credit: CSAPP

Size of page tables

• What is typical size of page table in a 32-bit system?
• 2^32 = 4GB virtual address space
• Assume page size = 4KB = 2^12
• Number of PTEs = number of pages in virtual address space =

(2^32/2^12) = 2^20 = 1M
• If each PTE is 4 bytes, page table size = 4 bytes * 1M entries = 4MB
• How are page tables stored in memory?

• All memory is only allocated in 4KB chunks, so how to store 4MB?
• Solution: split page table into pages (much like memory image), use

another page table to keep track of original page table!

1K = 2^10 = 1024
1M = 2^20 = 1024*1024
1G = 2^30 = 1024 * 1024 * 1024
B = byte, b = bit

Two-level page table in 32-bit systems

• 4MB page table split into 1024 chunks of 4KB each (to fit in page)
• 1M PTEs split across 1024 pages, each containing 1024 PTEs
• Physical frame numbers of these 1024 chunks stored in an outer page

table or page directory
• 4 byte page table entry each, so outer page directory fits in one page here

• Page table now has two levels
• Outer page table (page directory) has physical frame numbers of 1024 “inner”

page table pages
• Each inner page table has physical frame numbers (PTEs) of 1024 pages of the

process virtual address space

Outer page directory
Inner page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

0

PTE 0

...

PTE 1023

PTE 1024

...

PTE 2047

PTE ….

PTE 0

PTE 1

PTE 2

PTE 3

PTE 4

PTE 5

PTE 6

PTE 7

PTE 8
PTE …

1024 PTEs
Fits in one page

1024 inner page tables
Each with 1024 PTEs
Each PTE contains PFN of one page of process

Virtual address space can have
4GB memory = 1M pages

Image credit: CSAPP

Inner page tables on demand
• Note: not all inner page tables need to be created always, only those

with at least one valid entry needed
• Example: Process with 2K pages of code+data, 6K + 1023 unallocated

pages in address space, then one page allocated for stack
• First two inner page tables are allocated, hold the 2K valid PTEs
• Next 6 inner page tables are not created, the corresponding entries in outer

page directory are invalid / null
• In next inner page table, 1023 invalid entries and one valid PTE containing frame

number of stack page
• Remaining inner page tables not created, corresponding outer page directory

entries are invalid

Outer page directory

...

Inner page tables
VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 1024

...

PTE 2047

1023 null
PTEs

PTE … 1023
unallocated
pages

VP …

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

Image credit: CSAPP

Address translation in 2-level page table

• Virtual address of 32 bits = 20 bit page number + 12 bit offset
• 20 bits index into a single page table is now used as

• Most significant 10 bits index into page directory, locate PTE of one of the
1024 inner page tables contain our desired address

• Next 10 bits index into inner page table to locate PTE of page

• Locate PTE, computer physical address using frame number and 12-
bit offset into page

• MMU “walks” the multiple levels of the page table to translate
virtual addresses

Multi-level page tables

• What if outer page directory does not fit into one page?
• Store page directory across many pages, use yet another page table to store

frame numbers of page directory pages
• This can go on until outermost page table fits in one page
• Example: 48-bit CPU, 4KB pages, 8 byte page table entries

• 2^48 bytes in virtual address space = 2^36 pages for each process
• Each page can store 4KB/8 = 2^9 = 512 page table entries
• Innermost level (actual page table) has 2^36 page table entries = needs 2^27 pages
• Innermost page table split into multiple pages = 2^27 page table entries to track

innermost page table pages
• Next level of page table stores 2^27 page table entries = needs 2^18 pages
• Next level stores 2^18 page table entries = needs 2^9 = 512 pages
• Outermost level can store all 512 page table entries in 1 page

Address translation with 4-level page table

• Example: 48-bit CPU, 4KB pages, 8 byte page table entries
• 4 level page table required
• Outermost page directory has 512 entries, containing frame numbers of next level

page table pages, each of those contain frame numbers of next level page table, …
• Page table at i-th level has frame numbers of 512 (i+1)-th level page table pages

• How to translate VA to PA?
• 48-bit VA = 36 bits + 12 bit offset
• 36 bits = 9 bit offset into each of the 4 levels of page table

• If TLB miss, MMU has to access 4 different memory locations for 4 levels of
page table, in order to translate one VA to PA

• MMU page table walks become even longer, TLB hit rate is critical

Address translation with multi-level page table

VPN 1

0p-1n-1

offsetVPN 2 ... VPN k

PFN

0p-1m-1

offsetPFN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

Level 1
page table

Level 2
page table

Level k
page table

Image credit: CSAPP

Revisiting process virtual address space

• What should virtual address space/page table of process have? Any
memory that the process needs to access during its execution

• Its own memory image: code, data, stack, heap
• Other common memory it needs to access: shared language libraries, OS

• Why? MMU allows access to memory only via virtual addresses
• Can only access physical memory mapped in page table at some virtual address
• So all physical memory needed by process should be mapped into address space

• OS binary image (kernel code, data) is mapped into the virtual address
space of every process at addresses not used by process (high VA)

• Why is this done? Easy to jump to OS code during a trap

A subtle point

• OS is not a separate process
with its own address space

• Instead, OS code is part of the
address space of every
process

• A process sees OS as part of
its code (e.g., like a library)

• During trap, process jumps to
high virtual addresses and
executes OS code

19

OSOS

Image credit: OSTEP

OS is part of address space of every process

• OS code/data assigned high virtual addresses
• Compiler ensures high virtual addresses not used by user code

• OS virtual addresses are mapped to physical addresses of OS via page
table entries of every process

• There is only one copy of OS code/data in RAM
• Loaded into RAM at low physical addresses during system bootup

• Page tables of all processes map to same OS physical addresses
• Same high virtual addresses map to same physical addresses of OS code

Page-level isolation and security

• How is OS code/data protected from illegal access by user?
• Page table has permissions for every memory page

• Whether read/write or read-only (code pages are read-only)
• Whether page can be accessed in user mode or kernel mode

• Page table mappings for OS code are protected to allow access only
when CPU is in kernel mode

• CPU in user mode cannot access high virtual addresses of OS code
• CPU in kernel mode (after trap instruction) can access OS code/data

• MMU traps to OS if any violation detected during memory access,
ensures user programs can only access memory they are permitted to
access

Example: page-level protection using page tables

• Example: process P1 and P2 each have one read-only page, one read-
write page, and one page with OS code accessible in kernel mode

Page tables with permission bits

P1

AddressREAD WRITE
PFN 2Yes No
PFN 4Yes Yes
PFN 0Yes

VP 0:
VP 1:
VP 2:

•••

P2

PF 0

Physical memory

Yes

•••

PF 4

PF 6

PF 11

kernel
No
No
Yes

AddressREAD WRITE
PFN 11Yes No
PFN 6Yes Yes
PFN 0Yes

•••

Yes

kernel
No
No
Yes

VP 0:
VP 1:
VP 2:

PF 2

Image credit: CSAPP

