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Page table
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Address translation using paging

e Address translation performed by MMU using
page table

* Most significant bits (MSB) of VA give virtual
page number, least significant bits (LSB) give
offset within page

» Page table maps virtual page number (VPN) to
physical frame number (PFN)

* MMU maps VPN to PFN, adds offset to get PA

 Location of page table of currently running
process known to MMU

* Written into special CPU register by the OS, updated
on every context switch/page table change
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Figure 18.3: The Address Translation Process
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Page table structure

* Page table is an array, where i-th entry contains the information
(physical frame number etc) of the i-th page of the process

* Page table has entries for all pages in address space, even those for
which there is no physical frame number
* Itis an array with fixed number of entries, not a dynamic data structure

* Why this design? Why not a dynamic data structure whose size depends on
number of used pages? (Hint: think of effort to traverse the data structure in

MMU hardware)

* Page table structure fixed for a given architecture, as the logic to
traverse the page table is baked into MMU hardware



Page table entry

* Page table is array of page table entries, one per page of process

* i-th page table entry (PTE) contains physical frame number and other
details (permissions, status, ..) of i-th page of process
 Valid: is this page in use by process (not all virtual addresses are used by process)
 Various permission bits (more later)
e Other status bits: present, dirty, accessed (more later)
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Address translation in MMU

VIRTUAL ADDRESS
Page table n-1 p p-1
base register irtual page number (VPN) offset
(PTBR)
Valid Physical frame number (PFN)
o o 9 Page
The VPN acts table
asindexinto
the page table
If valid=0
TRAP
m-1 v p p-1

Physical frame number (PFN) | offset

PHYSICAL ADDRESS
Image credit: CSAPP



Size of page tables

B= byte b bit

* What is typical size of page table in a 32-bit system?

e 2732 = 4GB virtual address space

* Assume page size = 4KB = 2”712

* Number of PTEs = number of pages in virtual address space =
(2232/2712) =2720=1M

* |f each PTE is 4 bytes, page table size = 4 bytes * 1M entries = 4MB

* How are page tables stored in memory?
* All memory is only allocated in 4KB chunks, so how to store 4MB?

* Solution: split page table into pages (much like memory image), use
another page table to keep track of original page table!



Two-level page table in 32-bit systems

* 4MB page table split into 1024 chunks of 4KB each (to fit in page)
1M PTEs split across 1024 pages, each containing 1024 PTEs
* Physical frame numbers of these 1024 chunks stored in an outer page
table or page directory
* 4 byte page table entry each, so outer page directory fits in one page here
* Page table now has two levels

* Quter page table (page directory) has physical frame numbers of 1024 “inner”
page table pages

* Each inner page table has physical frame numbers (PTEs) of 1024 pages of the
process virtual address space
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Inner page tables
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Inner page tables on demand

* Note: not all inner page tables need to be created always, only those
with at least one valid entry needed

* Example: Process with 2K pages of code+data, 6K + 1023 unallocated
pages in address space, then one page allocated for stack
 First two inner page tables are allocated, hold the 2K valid PTEs

* Next 6 inner page tables are not created, the corresponding entries in outer
page directory are invalid / null

* In next inner page table, 1023 invalid entries and one valid PTE containing frame
number of stack page

 Remaining inner page tables not created, corresponding outer page directory
entries are invalid
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Address translation in 2-level page table

* Virtual address of 32 bits = 20 bit page number + 12 bit offset

e 20 bits index into a single page table is now used as

* Most significant 10 bits index into page directory, locate PTE of one of the
1024 inner page tables contain our desired address

* Next 10 bits index into inner page table to locate PTE of page

* Locate PTE, computer physical address using frame number and 12-
bit offset into page

* MMU “walks” the multiple levels of the page table to translate
virtual addresses



Multi-level page tables

* What if outer page directory does not fit into one page?

 Store page directory across many pages, use yet another page table to store
frame numbers of page directory pages

* This can go on until outermost page table fits in one page
* Example: 48-bit CPU, 4KB pages, 8 byte page table entries

2748 bytes in virtual address space = 2236 pages for each process
Each page can store 4KB/8 = 279 = 512 page table entries
Innermost level (actual page table) has 2236 page table entries = needs 2727 pages

Innermost page table split into multiple pages = 2227 page table entries to track
innermost page table pages

Next level of page table stores 2227 page table entries = needs 2718 pages
Next level stores 2*18 page table entries = needs 2729 = 512 pages
Outermost level can store all 512 page table entries in 1 page



Address translation with 4-level page table

* Example: 48-bit CPU, 4KB pages, 8 byte page table entries
* 4 level page table required

* Outermost page directory has 512 entries, containing frame numbers of next level
page table pages, each of those contain frame numbers of next level page table, ...

* Page table at i-th level has frame numbers of 512 (i+1)-th level page table pages

* How to translate VA to PA?
e 48-bit VA = 36 bits + 12 bit offset
» 36 bits = 9 bit offset into each of the 4 levels of page table

* |f TLB miss, MMU has to access 4 different memory locations for 4 levels of
page table, in order to translate one VA to PA

* MMU page table walks become even longer, TLB hit rate is critical



Address translation with multi-level page table
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Revisiting process virtual address space

* What should virtual address space/page table of process have? Any
memory that the process needs to access during its execution

* Its own memory image: code, data, stack, heap
 Other common memory it needs to access: shared language libraries, OS

* Why? MMU allows access to memory only via virtual addresses
* Can only access physical memory mapped in page table at some virtual address
* So all physical memory needed by process should be mapped into address space

* OS binary image (kernel code, data) is mapped into the virtual address
space of every process at addresses not used by process (high VA)

* Why is this done? Easy to jump to OS code during a trap



A subtle point
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OS is part of address space of every process

* OS code/data assigned high virtual addresses
* Compiler ensures high virtual addresses not used by user code

» OS virtual addresses are mapped to physical addresses of OS via page
table entries of every process

* There is only one copy of OS code/data in RAM
* Loaded into RAM at low physical addresses during system bootup

* Page tables of all processes map to same OS physical addresses
e Same high virtual addresses map to same physical addresses of OS code



Page-level isolation and security

* How is OS code/data protected from illegal access by user?

* Page table has permissions for every memory page
* Whether read/write or read-only (code pages are read-only)
 Whether page can be accessed in user mode or kernel mode

* Page table mappings for OS code are protected to allow access only
when CPU is in kernel mode
* CPU in user mode cannot access high virtual addresses of OS code
* CPU in kernel mode (after trap instruction) can access OS code/data

* MMU traps to OS if any violation detected during memory access,
ensures user programs can only access memory they are permitted to
access



Example: page-level protection using page tables

* Example: process P1 and P2 each have one read-only page, one read-
write page, and one page with OS code accessible in kernel mode

P1

P2
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