Processes

Mythili Vutukuru
CSE, IIT Bombay

The process abstraction

* Process is a running program

* When program is run, OS creates
new process, allocates memory,
initializes CPU context, and starts
process in user mode

* User program runs on CPU
normally, unless OS needs to
step in for system calls,
interrupts, program faults

Image credit: OSTEP

CPU Memory

: code X
i slatic data i
heap

Loading:
Program Takes on-disk program

/ TN and reads it into the

address space of process

Figure 4.1: Loading: From Program To Process

2

What defines a process?

* Every process has a unique process identifier (PID)

* Process occupies some memory in RAM (memory image)
* Code+data from executable
» Stack+heap allocated for runtime use

* The execution context of the process (values of CPU registers)
* PC has address of instruction of process, some registers have process data
* Process context is in CPU registers when process is running on CPU
* Context saved in memory when process is paused, restored when run again

* Ongoing communication with I/O devices

* Information is maintained about files that are open, ongoing network
connections, other active connections to I/O devices

States of a process

* OS manages multiple active processes at the same time. An active process
can be in one of the following situations.

* Running: currently executing on CPU
* CPU registers contain context of process

* Blocked/suspended/sleeping: process cannot run for some time
* Example: process has requested data from disk, command issued, but process
cannot proceed until the data from disk is available

* Ready/runnable: ready to run but waiting for OS scheduler to switch the
process in

* Many processes can be ready but scheduler can only run one on a CPU core

* Context of blocked and ready processes is saved in OS memory, so that
they can continue to run later on

new process

Process States

Blocked

Figure 1. The states of a process during its lifetime

Image credit: Dive into Systems

Example: process state transitions

* Consider a system that has two user processes PO and P1
* Initially PO is running, P1 is ready and awaiting its turn
* PO wants to read a file from disk via a system call

* OS handles the system call and gives command to disk, but data is not
available immediately

* Process PO is moved to blocked state, OS switches to process P1
* Process P1 runs for some time, and then an interrupt occurs from disk
e CPU jumps to OS which handles interrupt, PO is moved to ready state

* OS can continue to run P1 again after interrupt and OS scheduler switches to
ready process PO later on after some time

Example: process state transitions

Time Processg Processq Notes
1 Running Ready
2 Running Ready
o Running Ready Processg initiates I/O
+ Blocked Running Processg is blocked,
5 Blocked Running so Processt runs
6 Blocked = Running
7 Ready Running [/O done
8 Ready Running Process; now done
9 Running =
10 Running - Processp now done

Figure 4.4: Tracing Process State: CPU and I/O

Image credit: OSTEP

Process State Transitions

Descheduled
<~———> | Ready
Scheduled

1/O: |n|t|a /I/O: done

Blocked

Figure 4.2: Process: State Transitions

Image credit: OSTEP

Process control block (PCB)

 All information about a process is stored in a kernel data structure called
the process control block (PCB)
* Process identifier (PID)
* Process state (running, ready, blocked, terminated, ..)
Pointers to other related processes (parent, children)
Saved CPU context of process when it is not running
Information related to memory locations of a process
Information related to ongoing |/O communication

* PCB is known by different names in different OS
* struct procin xv6
 task_structin Linux

CPU scheduler

* Every OS maintains list of PCBs in some data structure
* Array, linked list, heap — what is suitable when?

e Scheduler loops through list of PCBs and picks process to run,
switches to process, switches to another process after some time,
and this continues...

* Scheduler picks one process to run on every core, so number of
running process is the number of parallel processors available

Booting

* What happens when you boot up a computer system?

 Basic Input Output System (BIOS) starts to run
» Resides in non-volatile memory, sets up all other hardware

e BIOS locates the boot loader in the boot disk (hard disk, USB, ..)
e Simple program whose job is to locate and load the OS
* Present in the first sector of the boot disk
* Combination of assembly and C code

* Boot loader sets up CPU registers suitably, loads kernel image from
disk to memory, transfers control to kernel

 OS code starts to run, exposes terminal to user, user starts programs

Booting real systems

» Bootloader must fit into 512 bytes (first sector of boot disk) to be
found easily by BIOS

* Bootloaders for simple/old OS could fit into one sector, but no longer
the case for modern OS

* Real life bootloaders are complex, need to read a large kernel image
from disk and network, do not fit into 512 bytes

* Real life booting is two step process: BIOS loads simple bootloader,
which loads a more complex bootloader, which then loads the OS

