System calls for process management

Mythili Vutukuru
CSE, IIT Bombay

API for process management

* What API does OS provide to user programs to manage processes?
* How to create, run, terminate processes?

* APl = Application Programming Interface
= functions available to write user programs

* APl provided by OS is a set of “system calls”
» System call is a function call into OS code that runs at higher CPU privilege level

» Sensitive operations (e.g., access to hardware) are allowed only at a higher
privilege level

* Some “blocking” system calls cause the process to be blocked and
context switched out (e.g., read() from disk), while others (e.g., getpid()
to get PID) can return immediately

Portability of code across OS

* POSIX API: standard set of system calls (and some C library functions)
available to user programs, defined for portability
* Programs written using POSIX API can run on any POSIX compliant OS

* Most modern OSes are POSIX compliant
* Program may still need to be recompiled for different architectures

* Program language libraries hide the details of invoking system calls
* Theprintf functionin libc calls the write system call to write to screen
e User programs usually do not need to worry about invoking system calls

* ABI (application binary interface) is the interface between machine
code and underlying hardware: ISA, calling convention, ...

Process related system calls (in Unix)

e fork () creates a new child process

 All processes are created by forking from a parent
e OS starts init process after boot up, which forks other processes
* The init process is ancestor of all processes, including shell/terminal

 exec () makes a process execute a given executable
* exit () terminates a process
e wait () causes a parent to block until child terminates

* Many variants of the above system calls exist in language libraries
with different arguments

Process creation: fork

* Parent process calls “fork” system call to create (spawn) a new process
* New child process created with new PID

* Memory image of parent is copied into that of child

e Parent and child run different copies of same code

Program Code

Program Code

Heap Heap

v

(free)

7 Parent memory image copied to create
child memory image

Stack

Image credit: OSTEP Stack

What happens after fork?

* Parent and child resume execution in their copies of the code

* Child starts executing with a return value of 0 from fork

* Parent resumes executing with a return value equal to child PID
* Parent and child run independently

* Any changes in parent’s data after fork does not impact child

int ret = fork() Child resumes int ret = fork()

if(ret == 0) { I here if(ret == 0) {
 print “l am child” | EICIACIUES print “lam child®

} here }
else if(ret > 0) { else if(ret > 0) {

print “I am parent” print “I am parent”

} }

{

O NN e W=

B b ek ek ek e ek ek ped e e
S O 00N D e R N= O
St

Image credit: OSTEP

int
main(int argc, char =xargv([])

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf (stderr, "fork failed\n");

exit(1l);
} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());
} else { // parent goes down this path (main)

printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());
}

return 0;

Figure 5.1: Calling fork () (pl.c)

Example code with fork

* Parent and child run independently and print to screen
* Order of execution of parent and child can vary

When you run this program (called p1. c), you'll see the following;:

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

Image credit: OSTEP

Example code with fork

int ret = fork()

intx=1

* What values of x are printed? if(ret == 0) {

* Parent and child both start with their own print “l am child”
independent copies of variable x in their A ’f:l
memory images }prm A

* Child increments its copy of x, prints 2 else if(ret > 0) {

* Parent decrements its copy of x, prints O print “I am parent”

X=x-1
Chilci:. X=2 o Child print X
J printf exit }
il parent: *=0 -® Parent
main fork printf exit

Image credit: CSAPP

Example code with nested fork

 Total 4 processes (1 parent + 3 child)

* Hello printed 4 times

Image credit: CSAPP

hello
> >®
printf exit
hello
> @ -8
fork printf exit
hello
>0 >®
printf exit
hello
® »® >@ »®
main fork fork printf exit

fork()
fork()

print hello
exit

Exit system call

* When a process finishes execution, it calls exit system call to
terminate
* OS switches the process out and never runs it again
 Exit is automatically called at end of main

* Exiting process cannot clean up its memory, and memory must be
freed up by someone else (why? More on this later.)

* Terminated process exists in a zombie state

* How are zombies cleaned up?

Wait system call

 Parent calls wait system call to reap (clean up
memory of) a zombie child

* Wait cleans up memory of one terminated child
and returns in parent process

* If child still running, wait system call blocks
parent until child exits

* If child terminated already, wait reaps child and
returns immediately

* If parent with no child calls wait, it returns
immediately without reaping anything

if(ret==0){
print “I am child”
exit()
}
else if(ret > 0) {
print “I am parent”
wait()

}

More on wait

* Wait system call variant waitpid reaps a specific child with a given PID,
while regular wait reaps any terminated child
* Read man pages for more details on arguments to waitpid and wait

* Wait system call “reaps” one dead child at a time (in any order)
* Every fork must be followed by call to wait at some point in parent

* What if parent has exited while child is still running?

* Child will continue to run, becomes orphan
* Orphans adopted by init process, reaped by init when they terminate

* If parent forks children, but does not bother calling wait for long time,
system memory fills up with zombies
« Common programming error, exhausts system memory

L R

LU=T v T B = R) B <%

10
11
12
13
14
15
16
17
18
19
20
21

#include <stdio.h>
#include <stdlib.h>
$#include <unistd.h>
#include <sys/wait.h>

ikt
main (int arge, char xargv([])
{
printf("hellc world (pid:%d)\n", (int) getpid());
int re = fork{):
if (re < 0} // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
} else { // parent goes down this path (main)

int wc = wait (NULL);
printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());
f

return 0;

Figure 5.2: Calling fork () Andwait () (p2.c)

Image credit: OSTEP

14

Example code with fork and wait

* Order of printing of child and parent is deterministic now
* Why? Parent waits until child prints and exits, then prints

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

Image credit: OSTEP

Exec system call

* Isn’t it impractical to run the same code in all

processes? T —
intret=fork();

* Sometimes parent creates child to do similar work.. fret==0){
e .. but other times, child may want to run different code exec(“some_executable”)
* Child process uses “exec” system call to get a new b
" .) else if(ret > 0) {
memory image orint “l am parent”

* Allows a process to switch to running different code }
* Exec system call takes another executable as argument

 Memory image is reinitialized with new executable, new
code, data, stack, heap, ...

1 $#include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <string.h>
5 #include <sys/wait.h>
6
7 int
8 main(int arge, char wxargv[])
9 {
10 printf{"hello world (pid:%d}\n"™, (int) getpid());
11 int rec = fork();
12 if [(roco< 0y | // fork failed; exit
13 fprintf (stderr, "fork failed\n");
14 exit(1);
15 } else if (re == 0) { // child (new process)
16 printf ("hello, I am child (pid:%d)\n", (int) gestpid()};
17 char +myargs[3];
18 myargs[0] = strdup(™wc"); // program: "wc" (word count})
19 myargs[1l] = strdup("p3.c"); // argument: file to count
20 myargs [2] = NULL; // marks end of array
21 execvp (myargs[0], myargs); // runs word count
printf ("this shouldn’t print out");
23 } else { // parent goes down this path (main)
24 int wco = wait (NULL) ;
a5 printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n",
26 re, woc, {(int) getpid()});
27 1
28 return 0;
29 }

Figure 5.3: Calling fork (), wait (), And exec() (p3.c)

Image credit: OSTEP 17

Example code with exec

* Many variants of exec system call (execvp used in example), which
differ in the arguments provided (read more in man pages)

* If exec successful, child gets new memory image, never comes back to
the code in old memory image after exec

* Print statement after exec doesn’t run if exec successful

* If exec unsuccessful, reverts back to original memory image

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

Image credit: OSTEP

Shell / Terminal

» After bootup, the 1nit process is first process created
* The init process spawns a shell like bash

* All future processes are created by forking from existing
processes like init or shell

* Shell reads user command, forks a child, execs the command
executable, waits for it to finish, and reads next command

e Common commands like 1s, echo, cat are all readily
available executables that are simply exec-ed by the shell

Example shell code

* How does the shell run a user command?

¢ Read input from user input(command)
* Shell process forks a child process
, o) - intret=fork()

* Child process runs exec with “echo

program executable as argument, calls exit if(ret == 0) {

when done exec(command)
* Parent shell calls wait, blocks till child }

terminates, reaps it, goes back for next else {

wait()

input
}

}

More on shell and commands

 Some commands already exist as programs written by OS developers
and compiled into executables
 Shell runs such command by simply calling exec in child process

 Some commands are implemented directly in shell code itself

* Think: why doesn’t shell exec command directly? Why fork a child?
* Do we want the shell program code to be rewritten fully?

* For “cd” command, “chdir” system call used to change directory of
parent process itself, no child process is forked. Why?

* Every process has a current working directory
* Do we want to change directory of some child process or shell itself?

Foreground and background execution

* By default, user command runs in foreground, shell cannot accept next
command until previous one finishes

* Background execution: when we type command followed by &
* Shell starts child to run command, but does not wait for command to finish

* Background processes reaped at a later time by shell
* When? Periodically? When next input is typed?
* How? There is a way to invoke wait where parent is not blocked even if child has
not exited (explore it on your own)
* It is also possible to run multiple commands in the foreground
* One after the other serially (next command starts after previous finishes)
* Or, all start at same time in parallel
* Explore how such things can be done in the standard Linux shell .

S

* Every process has some I/O channels (“files”) open, which can be
accessed by file descriptors
* STDIN, STDOUT, STDERR open by default for all processes

* Parent shell can manipulate these file descriptors of child before
exec in order to do things like /0 redirection

/O redirection

* E.g., output redirection is done by closing the default STDOUT and
opening a regular file in its place

STDIN from keyboard

Process P > STDOU%creen STDOUT to file

STDERR to screen

23

TR SEECE- SENT RS S ICR &

P e e b e e e e e e
Mo N heln e WM D

NERREHEBEES

28
i

#include <stdio.h>

#include <stdlib.h> Here is the output of running the p4. c program:
#include <unistd.h>
#include <string.h> prompt> ./p4
#include <fcntl.h> prompt> cat pd.output
#include <sys/wait.h>
32 149 846 pd.c
FEE prompt>

main{int argec, char +argv[])

{

int reo= fork{);
if {rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit(1);
} else if (rc == 0) { // child: redirect standard output to a file

close (STDOUT_FILENO) ; : : :
open ("./p4.output™, O_CREAT|O_WRONLY|O_TRUNC, S5_IRWXU); EOJIAIVHRAUIRITNEIVCIEIIERIILE

descriptor (STDOUT in this case)

/{ now exec "wc"...
char myargs[3];

myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[l] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp (myargs[0], myargs); // runs word count

} else: | // parent goes down this path (main)

int wo = wait (NUOLL);
!

return 0;

Figure 5.4: All Of The Above With Redirection (p4.c) Image credit: OSTEP

Shell commands with pipes

* Shell can also “pipe” the output of one command into another, by
connecting STDOUT of one child to the STDIN of another child via a
pipe (a communication mechanism provided by kernel)

S cat foo.c | grep factorial

cat process

grep process

write to stdout read from stdin

(ex. printf)

(ex. scanf)

user-level

kernel-level (OS)

Image credit: Dive Into Systems

S e e - — -

