
Mythili Vutukuru
CSE, IIT Bombay

System calls for process management

API for process management

• What API does OS provide to user programs to manage processes?
• How to create, run, terminate processes?

• API = Application Programming Interface
= functions available to write user programs

• API provided by OS is a set of “system calls”
• System call is a function call into OS code that runs at higher CPU privilege level
• Sensitive operations (e.g., access to hardware) are allowed only at a higher

privilege level
• Some “blocking” system calls cause the process to be blocked and

context switched out (e.g., read() from disk), while others (e.g., getpid()
to get PID) can return immediately

2

Portability of code across OS

• POSIX API: standard set of system calls (and some C library functions)
available to user programs, defined for portability

• Programs written using POSIX API can run on any POSIX compliant OS
• Most modern OSes are POSIX compliant
• Program may still need to be recompiled for different architectures

• Program language libraries hide the details of invoking system calls
• The printf function in libc calls the write system call to write to screen
• User programs usually do not need to worry about invoking system calls

• ABI (application binary interface) is the interface between machine
code and underlying hardware: ISA, calling convention, …

3

Process related system calls (in Unix)

• fork() creates a new child process
• All processes are created by forking from a parent
• OS starts init process after boot up, which forks other processes
• The init process is ancestor of all processes, including shell/terminal

• exec() makes a process execute a given executable
• exit() terminates a process
• wait() causes a parent to block until child terminates
• Many variants of the above system calls exist in language libraries

with different arguments

4

Process creation: fork

• Parent process calls “fork” system call to create (spawn) a new process
• New child process created with new PID
• Memory image of parent is copied into that of child
• Parent and child run different copies of same code

Parent memory image copied to create
child memory image

Image credit: OSTEP

What happens after fork?
• Parent and child resume execution in their copies of the code
• Child starts executing with a return value of 0 from fork
• Parent resumes executing with a return value equal to child PID
• Parent and child run independently
• Any changes in parent’s data after fork does not impact child

int ret = fork()
if(ret == 0) {
print “I am child”

}
else if(ret > 0) {
print “I am parent”

}

int ret = fork()
if(ret == 0) {
print “I am child”

}
else if(ret > 0) {
print “I am parent”

}

Child resumes
here

Parent resumes
here

Image credit: OSTEP

Example code with fork

• Parent and child run independently and print to screen
• Order of execution of parent and child can vary

8
Image credit: OSTEP

Example code with fork

• What values of x are printed?
• Parent and child both start with their own

independent copies of variable x in their
memory images

• Child increments its copy of x, prints 2
• Parent decrements its copy of x, prints 0

int ret = fork()
int x = 1
if(ret == 0) {
print “I am child”
x = x+1
print x

}
else if(ret > 0) {
print “I am parent”
x = x -1
print x

}

Image credit: CSAPP

Example code with nested fork

• Total 4 processes (1 parent + 3 child)
• Hello printed 4 times

fork()
fork()
print hello
exit

Image credit: CSAPP

Exit system call

• When a process finishes execution, it calls exit system call to
terminate

• OS switches the process out and never runs it again
• Exit is automatically called at end of main

• Exiting process cannot clean up its memory, and memory must be
freed up by someone else (why? More on this later.)

• Terminated process exists in a zombie state
• How are zombies cleaned up?

Wait system call

• Parent calls wait system call to reap (clean up
memory of) a zombie child

• Wait cleans up memory of one terminated child
and returns in parent process

• If child still running, wait system call blocks
parent until child exits

• If child terminated already, wait reaps child and
returns immediately

• If parent with no child calls wait, it returns
immediately without reaping anything

…
int ret = fork()
if(ret == 0) {
print “I am child”
exit()

}
else if(ret > 0) {
print “I am parent”
wait()

}
…

More on wait

• Wait system call variant waitpid reaps a specific child with a given PID,
while regular wait reaps any terminated child

• Read man pages for more details on arguments to waitpid and wait

• Wait system call “reaps” one dead child at a time (in any order)
• Every fork must be followed by call to wait at some point in parent

• What if parent has exited while child is still running?
• Child will continue to run, becomes orphan
• Orphans adopted by init process, reaped by init when they terminate

• If parent forks children, but does not bother calling wait for long time,
system memory fills up with zombies

• Common programming error, exhausts system memory

14
Image credit: OSTEP

Example code with fork and wait

• Order of printing of child and parent is deterministic now
• Why? Parent waits until child prints and exits, then prints

Image credit: OSTEP

Exec system call

• Isn’t it impractical to run the same code in all
processes?

• Sometimes parent creates child to do similar work..
• .. but other times, child may want to run different code

• Child process uses “exec” system call to get a new
“memory image”

• Allows a process to switch to running different code
• Exec system call takes another executable as argument
• Memory image is reinitialized with new executable, new

code, data, stack, heap, …

…
int ret = fork();
if(ret == 0) {
exec(“some_executable”)

}
else if(ret > 0) {
print “I am parent”

}
…

17
Image credit: OSTEP

Example code with exec
• Many variants of exec system call (execvp used in example), which

differ in the arguments provided (read more in man pages)
• If exec successful, child gets new memory image, never comes back to

the code in old memory image after exec
• Print statement after exec doesn’t run if exec successful

• If exec unsuccessful, reverts back to original memory image

Image credit: OSTEP

Shell / Terminal
• After bootup, the init process is first process created
• The init process spawns a shell like bash
• All future processes are created by forking from existing

processes like init or shell
• Shell reads user command, forks a child, execs the command

executable, waits for it to finish, and reads next command
• Common commands like ls, echo, cat are all readily

available executables that are simply exec-ed by the shell

19

Example shell code
• How does the shell run a user command?
• Read input from user
• Shell process forks a child process
• Child process runs exec with “echo”

program executable as argument, calls exit
when done

• Parent shell calls wait, blocks till child
terminates, reaps it, goes back for next
input

$echo hello
hello
$

do forever {
input(command)

int ret = fork()

if(ret == 0) {
exec(command)

}
else {

wait()
}

}

More on shell and commands

• Some commands already exist as programs written by OS developers
and compiled into executables

• Shell runs such command by simply calling exec in child process

• Some commands are implemented directly in shell code itself
• Think: why doesn’t shell exec command directly? Why fork a child?

• Do we want the shell program code to be rewritten fully?

• For “cd” command, “chdir” system call used to change directory of
parent process itself, no child process is forked. Why?

• Every process has a current working directory
• Do we want to change directory of some child process or shell itself?

Foreground and background execution
• By default, user command runs in foreground, shell cannot accept next

command until previous one finishes
• Background execution: when we type command followed by &

• Shell starts child to run command, but does not wait for command to finish

• Background processes reaped at a later time by shell
• When? Periodically? When next input is typed?
• How? There is a way to invoke wait where parent is not blocked even if child has

not exited (explore it on your own)

• It is also possible to run multiple commands in the foreground
• One after the other serially (next command starts after previous finishes)
• Or, all start at same time in parallel
• Explore how such things can be done in the standard Linux shell 22

$sleep 10 &
$

I/O redirection
• Every process has some I/O channels (“files”) open, which can be

accessed by file descriptors
• STDIN, STDOUT, STDERR open by default for all processes

• Parent shell can manipulate these file descriptors of child before
exec in order to do things like I/O redirection

• E.g., output redirection is done by closing the default STDOUT and
opening a regular file in its place

23

Process P

STDIN from keyboard

STDOUT to screen

STDERR to screen

STDOUT to file

$ls > foo.txt
$

Image credit: OSTEP

Open uses the first available file
descriptor (STDOUT in this case)

Shell commands with pipes

• Shell can also “pipe” the output of one command into another, by
connecting STDOUT of one child to the STDIN of another child via a
pipe (a communication mechanism provided by kernel)

Image credit: Dive Into Systems

