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CPU Scheduling Policies



OS scheduler

• OS scheduler schedules process on CPU
• One process at a time per core
• Multiple processes can run in parallel on multiple cores

• Scheduling policy: which one of the ready/runnable processes should 
be run next on a given CPU core?

• Mechanism of context switching (save context of old process in its kernel 
stack/PCB and restore context of new process) is independent of policy

• Simple scheduling policies have good theoretical guarantees, but not 
practical for real operating systems

• Real-life schedulers are very complex, involve many heuristics



Preemptive vs. non preemptive schedulers

• When is the OS scheduler invoked to trigger a context switch?
• Only when a process is in kernel mode for a trap, but not on every trap

• Non-preemptive scheduler performs only voluntary context switches
• Process makes blocking system call
• Process has exited or has been terminated

• Preemptive scheduler performs involuntary context switches also
• Process can be context switched out even if process is still runnable/ready
• OS can ensure that no process runs for too long on CPU, starving others

• Modern systems use preemptive schedulers
• Process can be context switched out any time in its execution



Timer interrupts

• Scheduler (OS) can run only when process is in kernel mode
• What if process never goes to kernel mode? How to perform pre-

emptive scheduling?
• Timer interrupts: special interrupts that go off periodically
• Used by OS to get back in control periodically

• Increment clock ticks, do other book keeping
• Run scheduling algorithm if required to do involuntary context switch of 

currently running process
• Hardware support in the form of timer interrupts essential to 

implementing pre-emptive scheduling policies



Goals of CPU scheduling policy

• Maximize utilization: efficient use of CPU hardware
• Minimize completion time / turnaround time of a process = time from 

process creation to completion
• Minimize response time of a process = time from process creation to first 

time it is run (important for interactive processes)
• Fairness: all processes get a fair share of CPU (account for priorities also)
• Low overhead of scheduling policy

• Scheduler does not take too long to make a decision (even with large #processes)
• Scheduler does not cause too many context switches (~1 microsecond to switch)



Simplest policy: First In First Out
• Newly created processes are put in a FIFO queue, scheduler runs them 

one after another from queue
• Non-preemptive: process allowed to run till it terminates or blocks

• When process unblocks, the next run is separate “job”, added to queue again
• That is, if a process comes back after I/O wait, it counts as a fresh CPU burst 

(CPU burst = the CPU time used by a process in a continuous stretch)
• Example schedule: P1 (1-5), P2 (6-8), P3 (9 to 10)

Process CPU time needed 
(units)

Arrives at end 
of time unit

Execution 
time slots

P1 5 0 1-5

P2 3 1 6-8

P3 2 3 9-10



Problem with FIFO

• Example: three processes 
arrive at t=0 in the order A,B,C

• Problem: convoy effect (small 
processes get stuck behind 
long processes)

• Average turnaround times tend 
to be high
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Shortest Job First (SJF)
• Assume CPU burst of a process (amount of time a process runs on 

CPU until termination/blocking) is known apriori
• Pick process with smallest CPU burst to run next, non-preemptive

• Store PCBs in a heap-like data structure, extract process with min CPU burst

• Example schedule: P1 (1-5), P3 (6-7), P2 (8-10)

Process CPU burst Arrival time Execution time slots

P1 5 0 1-5

P2 3 1 8-10

P3 2 3 6-7



Problem with SJF

• Provably optimal when all 
processes arrive together
• Theoretically guaranteed 

to have the lowest 
average turnaround time 
across all policies (under 
certain assumptions)

• SJF is non-preemptive, so 
short jobs can still get stuck 
behind long ones.
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Shortest Remaining Time First (SRTF)

• Preemptive version of SJF
• A newly arrived process can preempt a running process, if CPU burst 

of new process is shorter than remaining time of running process
• Avoids problem of short process getting stuck behind long one

• Example schedule: P1 runs for 1 unit, P2 (2-4), P3 (5-6), P1 (7-10)

Process CPU burst Arrival time Execution time slots

P1 5 0 1, preempted, then 7-10

P2 3 1 2-4

P3 2 3 5-6



Round Robin (RR)
• Every process executes for a fixed 

quantum slice
• Slice not too small (to amortize 

cost of context switch)
• Slice not too big (to provide 

good responsiveness)
• Preemptive policy 

• Timer interrupt used to enforce 
periodic scheduling

• Good for response time, fairness
• Bad for turnaround time
• xv6 is a simple RR scheduler
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Weighted Fair Queueing (WFQ)
• Round robin with different weights or priorities to processes

• Decided by scheduler or can be set by users
• Time slice will be in proportion to the weight or priority

• Real life schedulers may not be able to enforce time slice exactly
• What if timer interrupt is not exactly aligned with time slice?
• What if process blocks before its time slice?

• Practical modification: keep track of run time of process, schedule 
process that has used least fraction of its fair share

• Compensate excess/deficit running time in future time slices

• Linux scheduler is a variant of weighted fair queueing
• CFS (completely fair scheduler) uses red-black trees to keep track of the fair 

share run time of processes, schedules the one with least run time



Multi-level feedback queue (MLFQ)

• Another practical algorithm, with realistic assumptions
• What problem does it solve?
• Ideally, we want to optimize for turnaround time like SJF, give priority 

to shorter jobs (less time on CPU, more time on I/O) 
• But we do not know running time beforehand

• Also ensure low response time like round robin 
• How to optimize for both turnaround time and response time without 

knowing job size apriori?



Overview of MLFQ

• Multiple queues, one for each 
priority level

• Schedule processes from highest 
priority queue to lowest

• Use round robin scheduling for 
processes within same priority level

• What is priority? Set by user but 
decays with age. Why?
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Priority decays with age

• Job that uses up its time slice at a priority level goes to lower priority
• Why? Ensures short I/O-bound processes get priority over long CPU-

bound processes, but without knowing CPU burst apriori
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Avoiding starvation

• Periodically reset all processes to highest priority level to avoid 
starvation of low priority or CPU-bound processes
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Other considerations

• What if a job always gives up CPU just before its time slice ends? Do 
we keep it always at highest priority?

• We can consider total time spent by a job at a given priority level, not 
time in just one execution

• Time slice can vary with priority level
• Longer time slice for lower priority long running jobs

• How to parameterize? How many priority levels? What is time slice?
• No easy answers, must be tuned based on workload
• Every OS comes with some default parameters



MLFQ summary
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So, what have we achieved with MLFQ?

• Prioritize short, I/O bound processes over long, CPU bound processes
• Why? System works best when short processes don’t have to wait for too 

long behind longer processes (that’s why SJF is optimal!)
• How is this done? I/O bound processes will stay at highest priority level
• We do this without knowing the run times apriori, so practical to work in 

real life scenarios
• Real life schedulers cannot make assumptions on knowing run times etc, 

but still try to achieve good properties of theoretically optimal 
schedulers



Multicore scheduling

• Scheduling decision needs to be made separately for each core
• Do we bind a process to a particular CPU core always, or do we let a 

process run on any CPU core that is free?
• Ensuring a process runs on the same core as far as possible is better

• Avoids coordination overheads across cores, better CPU cache performance

• But, we must be flexible too
• If CPU core overloaded, some of its processes must move to another core
• Load balancing across cores to ensure uniform workload distribution


