
Mythili Vutukuru
CSE, IIT Bombay

Semaphores



Semaphore

• Another synchronization primitive like condition variables
• Can be used to achieve similar synchronization between threads

• Semaphore is a variable with an underlying counter
• Semaphore counter can be initialized to a suitable value

• Two functions on a semaphore variable
• Down/wait decrements the counter by one, blocks the calling thread if the 

resulting value is negative
• Up/post increments the counter by one, wakes up any one thread that is blocked 

on the semaphore
• Not possible to access counter value in any other way 

• For example, cannot check if counter is positive and only then call down



Example: use semaphore as a lock
• Consider semaphore variable “sem” initialized to value 1
• Multiple threads in a program can use semaphore for mutual exclusion

• down(sem) //counter is 0, any further downs will wait here
• critical section //accessed with mutual exclusion
• up(sem) //counter incremented to 1, waiting thread woken up

• Such semaphore used as locks are called binary semaphores

down(sem) //counter=0
critical section
….
…
up(sem)

T1

down(sem) //counter -1
(BLOCKED)

(woken by T1’s call to up)
critical section
up(sem)

T2
down(sem) //counter 0
critical section
up(sem) //counter 1

T1

down(sem) //counter 0
critical section
up(sem) //counter 1

T2



Example: T1T2

• Suppose we want two threads to synchronize as follows: T1T2
• T1 does some work and only then T2 runs
• If T2 starts before T1, it must wait until T1 finishes its task

• We can achieve this using a semaphore: “sem” initialized to 0
• T1 does its work, calls up(sem)
• T2 calls down(sem), then does its work

T1 does its task
up(sem) //counter is 0

T1 down(sem) //counter -1
(BLOCKED)

(woken by T1’s up)
T2 does its task

T2
T1 does its task
up(sem) //counter 1

T1

down(sem) //counter 0
//no need to block
T2 does its task

T

T2 starts before T1 T1 starts before T2



Example: T1 and T2 wait for each other (1)

• Suppose two threads T1 and T2 both have to run two steps in their 
processing, say step 1 and step2

• We want both threads to finish the first step before either can start 
their second step

• Use two semaphores T1done and T2done (both initialized to 0)

T1 does step 1

up(T1done)
down(T2done)

T1 does step 2

T1
T2 does step 1

up(T2done)
down(T1done)

T2 does step 2

T2

Increment your semaphore to 1
Wait if the other thread’s semaphore is still 0



Example: T1 and T2 wait for each other (2)
• Suppose two threads T1 and T2 both have to run two steps in their 

processing, say step 1 and step2. We want both threads to finish the 
first step before either can start their second step

• Use two semaphores T1done and T2 done (both initialized to 0)
• What is wrong with this solution below? (up and down interchanged)
• Next step: how to generalize this problem to N threads?

T1 does step 1

down(T2done)
up(T1done)

T1 does step 2

T1
T2 does step 1

down(T1done)
up(T2done)

T2 does step 2

T2

Both threads wait at down
Neither can do up
DEADLOCK!!



Semaphore implementation

• You may assume that up and down operations are implemented 
atomically (using locking internally as needed)

• Counter accessed and updated with mutual exclusion
• Need not worry about race conditions between up and down
• No need to use extra locks to protect atomicity of wait/down

• But need to use separate locks or binary semaphores to access shared 
data in a program

• Semaphore used for signaling doesn’t provide mutual exclusion



Recap: Producer-consumer problem
• Producer and consumer threads, sharing data via a buffer of size N

• Producers produce items, add into a shared buffer
• Consumers consume item from shared buffer

• What kind of coordination is needed between threads?
• Producer thread produces and places items into buffer, waits if the buffer is full 

Consumer signals after making space in the buffer
• Consumer thread consumes items from buffer, waits if the buffer is empty 

Producer signals after producing items

• We have studied implementation with condition variables, similar 
implementation possible with semaphores

ConsumerProducer



Producer-consumer using semaphores (1)
• One semaphore “sem_empty” is initialized to N, indicates number of 

empty slots in buffer available for producers to use
• Producer does down every time it produces an item
• Once all slots are filled, down operation blocks
• Sleeping producer woken up by consumer that calls “up” after consuming

• Another semaphore “sem_filled” is initialized to 0, indicates number of 
filled slots in buffer that are ready to be consumed

• Easier solution than CV, no need to keep separate counter

//Producer
down(sem_empty) //blocks if buffer full
produce item
up(sem_filled)//wakeup consumer

//Producer
down(sem_empty) //blocks if buffer full
produce item
up(sem_filled)//wakeup consumer

//Consumer
down(sem_filled)//blocks if buffer empty
consume item
up(sem_empty)//wake up producer

//Consumer
down(sem_filled)//blocks if buffer empty
consume item
up(sem_empty)//wake up producer



Producer-consumer using semaphores (2)
• Note: semaphore solution does not use any locks by default

• Condition variables had associated locks
• If buffer needs to be accessed correctly, needs extra locks via binary 

semaphores for mutual exclusion
• Use another semaphore mutex (initialized to 1) for locking

//Producer
down(sem_empty) //blocks if buffer full
down(mutex)
produce item and add to buffer
up(mutex)
up(sem_filled)//wakeup consumer

//Producer
down(sem_empty) //blocks if buffer full
down(mutex)
produce item and add to buffer
up(mutex)
up(sem_filled)//wakeup consumer

//Consumer
down(sem_filled)//blocks if buffer empty
down(mutex)
consume item and remove from buffer
up(mutex)
up(sem_empty)//wake up producer

//Consumer
down(sem_filled)//blocks if buffer empty
down(mutex)
consume item and remove from buffer
up(mutex)
up(sem_empty)//wake up producer



Producer-consumer using semaphores: deadlock
• With condition variables, lock given to sleep/wait is released after the thread is 

safely put to sleep
• No such concept of releasing any locks with semaphores

• With semaphore, if you do down with another binary semaphore/lock held, 
the lock will not be released on its own

• The solution shown below leads to deadlock: why?

//Producer
down(mutex)
down(sem_empty) //blocks if buffer full
produce item
up(sem_filled)//wakeup consumer
up(mutex)

//Producer
down(mutex)
down(sem_empty) //blocks if buffer full
produce item
up(sem_filled)//wakeup consumer
up(mutex)

//Consumer
down(mutex)
down(sem_filled)//blocks if buffer empty
consume item
up(sem_empty)//wake up producer
up(mutex)

//Consumer
down(mutex)
down(sem_filled)//blocks if buffer empty
consume item
up(sem_empty)//wake up producer
up(mutex)



Guidelines for using semaphores

• Semaphores can be used to do similar thread synchronization as CV
• Waiting on CV ~ down operation on semaphore
• Signaling on CV ~ up operation on semaphore
• No equivalent of signal broadcast with semaphores

• Separate semaphores needed for signaling and mutual exclusion
• Semaphore counter can replace some integer/bool variables

• But cannot access or change semaphore counter separately
• Careful with deadlocks

• Ensure that “up” can run every time a thread blocks due to “down”
• Note: no locks released when a thread blocks due to down operation

• Pay attention to initial value of semaphore



Example: Batched processing (1)

• Two kinds of threads in an application
• Request threads, each containing an application request
• Batch processor thread processes N requests at a time in a batch

• What kind of synchronization do we need?
• Batch processing thread must wait until N requests arrive, then start batch
• Request thread must wait until batch starts, then get processed and finish

• Example: suppose Covid-19 vaccination vial has 10 doses. Nurse waits 
for 10 patients to arrive, then opens the vial and vaccinates all 10



Example: Batched processing (2)

• Solution using two CVs: one for requests to wait, one for batch 
processor to wait

• Other integer and boolean variables, mutex/lock for atomicity

//Request thread
lock(mutex)
count++
if(count == N)

signal(cv_batch_processor)
while(not batch_started)

wait(cv_request, mutex)
unlock(mutex)

//Request thread
lock(mutex)
count++
if(count == N)

signal(cv_batch_processor)
while(not batch_started)

wait(cv_request, mutex)
unlock(mutex)

//Batch processor thread
lock(mutex)
while(count < N)

wait(cv_batch_processor, mutex)
batch_started = true
signal_broadcast(cv_request)
unlock(mutex)

//Batch processor thread
lock(mutex)
while(count < N)

wait(cv_batch_processor, mutex)
batch_started = true
signal_broadcast(cv_request)
unlock(mutex)



Example: Batched processing (3)
• Semaphore mutex initialized to 1, acts as lock to update count
• Semaphore sem_batch_processor, initialized to 0

• Batch processor waits, until Nth request unblocks it
• Semaphore sem_request, initialized to 0

• All N request threads wait on it (until batch starts)
• When batch starts, batch processor thread does up N times to unblock all

//Request thread
down(mutex)
count++
if(count == N)

up(sem_batch_processor)
up(mutex)
down(sem_request)

//Request thread
down(mutex)
count++
if(count == N)

up(sem_batch_processor)
up(mutex)
down(sem_request)

//Batch processor thread
down(sem_batch_processor)
//ready to start batch
do N times: up(sem_request)

//Batch processor thread
down(sem_batch_processor)
//ready to start batch
do N times: up(sem_request)



Example: Batched processing (4)
• Alternate pattern of solution
• Semaphore sem_request, initialized to 0

• All N request threads wait on it (until batch starts)
• When batch starts, batch processor does up once, unblocks only one thread
• Each woken up request thread wakes up one other thread

//Request thread
down(mutex)
count++
if(count == N)

up(sem_batch_processor)
up(mutex)
down(sem_request)
up(sem_request)

//Request thread
down(mutex)
count++
if(count == N)

up(sem_batch_processor)
up(mutex)
down(sem_request)
up(sem_request)

//Batch processor thread
down(sem_batch_processor)

up(sem_request)

//Batch processor thread
down(sem_batch_processor)

up(sem_request)


