Threads and concurrency

Mythili Vutukuru
CSE, IIT Bombay

Processes and threads

Program Code

* So, far we have studied single threaded

programs Heap

* Recap: process execution

PC
* CPU executes instruction by instruction, \
traps to OS as needed

* PC points to next instruction to run
* SP points to current top of stack ‘

(free)

* Other registers also with process context

* A program can also have multiple Stack

threads of execution
e What is a thread?

What are threads?

* Threads = light weight processes

 Why? A process may want to run multiple copies of itself
* If one copy blocks due to blocking system call, another copy can still run
e Multiple copies can run in parallel on multiple CPU cores to speed up work

* Why not have multiple child processes running the same program?
* Too much memory consumed by identical memory images
* Needs IPC to share information across processes

* A process can create multiple threads (default: single thread)
* Multiple threads share same memory image of process, saves memory
* Threads run independently on same code (if one blocks, another can still run)
* Threads can run in parallel on multiple cores at same time
* Threads can share data more easily

Multi-threaded process

* A thread is like another copy of a

Program Code
process that executes PC1
independently from parent —
* Threads shares the same code, PC2
global/static data, heap (free)
* Each thread has separate stack for
independent function calls spy | sk
* Each thread has separate PC, o
running different code sp1 —
Stack (1)

* Each thread has separate CPU
context during execution

Image credit: OSTEP

Concurrency vs. parallelism

* Understand the difference between concurrency and parallelism

* Concurrency: running multiple threads/processes at the same time, even on
single CPU core, by interleaving their executions

* Parallelism: running multiple threads/processes in parallel over different CPU
cores

* With multiple threads, process can get better performance on multicore
systems via parallelism
* Example: matrix multiplication can be easily parallelized, with different threads
operating on different parts of the matrix

* Even if no parallelism (single core), concurrency of threads ensures
effective use of CPU when one of the threads blocks

* Example: if one thread of a server blocks on /O read, another can still run

POSIX threads

void f1() {

* In Linux, POSIX threads (pthreads) library allows &
creation of multiple threads in a process void f2() {

* Each thread is given a start function where its
execution begins

* Threads execute independently from parent after main() {
creation

:

pthread ttl, t2
* Parent can wait for threads to finish (optional) pthread_create(&tl, .., f1,..)

.] . L . pthread create(&t2, .., 2,..)
 Several such threading libraries exist in different

rogramming languages
Prog 8 suag pthread _join(t1, ..)
pthread_join(t2, ..)

Mooe =] oy W e W s

ENNHHI—*!—\HHD—‘HHH
Lo == T V= T+~ G Y = S & | J T~ S % T - I =

#include <stdio.h>
#include <assert.h>
#include <pthread.h>

void sxmythread(veid xarg) |

printE ("$s\n", (chaxr %) arg);
return NULL;

}

int

main(int argc, char xargv[]) {
pthread t pl, pZ2;
int rc;
printf ("main: begin\n");
rc = pthread create(&pl, NULL
rc = pthread create (&p2, NULL
// Jjoin waits for the threads
rc = pthread join(pl, NULL);
rc = pthread join(p2, NULL);
printf ("main: end\n");

return 0;

, mythread, "A"); assert (rc
, mythread, "B"); assert (rc
to finish

assert (rec == 0);

assert(rc == 0);

Figure 26.2: Simple Thread Creation Code (t0.c)

Creating threads using pthreads API

0);

= 0);

Scheduling threads

* OS schedules threads that are ready to run independently, like processes

* The context of a thread (PC, registers) is saved into/restored from thread
control block (TCB)

* Every PCB has one or more linked TCBs

* Threads that are scheduled independently by kernel are called kernel
threads
e E.g., Linux pthreads are kernel threads

* In contrast, some libraries provide user-level threads
* User program sees multiple threads, but kernel is aware of fewer threads

* Multiple such user threads are seen as one thread by kernel, may not be
scheduled in parallel for this reason

* Why use user threads then? Ease of programming

Example: threads with shared data

static wvolatile int counter = 0;

L
// mythread()
] I r
10 // S8imply adds 1 to counter repeatedly, in a loop
1 f{ Wo, this is not how you would add 10,000,000 to
12 // a counter, but it shows the problem nicely.
* Shared global counter
14 void =
15 mythread(void #arg)
16 {

* Two threads update same B paergs b, (@) S

18 int 1i;
counter 1027 times i oE G R IR M BT
i Er::tf[“%s: donehn", (char «) arg);

* What is expected output n rotum wiis

24

after both threads finish? -

sy ff main()

28 il

29 // Just launches two threads (pthread create)
30 // and then waits for them (pthread join)

31 Fird

32 int

L= -

3 main(int argc, char =argv(])

34 |

as pthread t pl, p2;

36 printf({"main: begin {(counter = %d)\n", counter);

kol Pthread_create{&pl, NULL, mythread, "A");

34 Pthread create(&p2, NWULL, mythread, "B");

39

40 {/{ join waits for the threads to finish

| Pthread_join{pl, NULL);

42 Pthread_join{pZ2, NULL};

43 printf ("main: done with both (counter = %d)\n", counter);
44 return 0; 9
45

Threads with shared data: what happens?

* What do we expect? Two threads, each increments counter by 1077,
so 2X1077

prompt> gcc —o main main.c -Wall —-pthread
prompt> ./main

main: begin (counter = ()

A: begin

B: begin

A: done

B: done

main: done with beoth (counter = 20000000)

* Sometimes, a lower value. Why?

prompt> ./main

main: begin {(counter = 0)
A: begin

B: begin

A: done

B: done

main: done with both (counter = 19345221) 10

Understanding shared data access

* The C code “counter = counter + 1” is compiled into multiple
instructions
* Load counter variable from memory into register
* Increment register
 Store register back into memory of counter variable

load counter = reg
reg=reg+1
store reg = counter

Understanding shared data access

* What happens when two threads run this line of code concurrently?

e Counter is O initially

* T1 loads counter into register, increment reg
* Context switch, register (value 1) saved

* T2 runs, loads counter O from memory

* T2 increments register, stores to memory

* T1 resumes, stores register value to counter
* Counter value rewritten to 1 again

* Final counter value is 1, expected value is 2

T1

load counter = reg
reg=reg+1
(context switch, save reg)

T2

load counter = reg
reg=reg+1
store reg = counter

(resume, restore reg)
store reg = counter

Race conditions, critical sections

Incorrect execution of code due to concurrency is called race condition
* Due to unfortunate timing of context switches, atomicity of data update violated

Race conditions happen when we have concurrent execution on shared data
* Threads sharing common data in memory image of user processes
* Processes in kernel mode sharing OS data structures

We require mutual exclusion on some parts of user or OS code
* Concurrent execution by multiple threads/processes should not be permitted

Parts of program that need to be executed with mutual exclusion for correct
operation are called critical sections

* Present in multi-threaded programs, OS code

How to access critical sections with mutual exclusion? Using locks (next topic)

