
Mythili Vutukuru
CSE, IIT Bombay

Threads and concurrency



Processes and threads
• So, far we have studied single threaded 

programs 
• Recap: process execution

• CPU executes instruction by instruction, 
traps to OS as needed

• PC points to next instruction to run
• SP points to current top of stack
• Other registers also with process context

• A program can also have multiple 
threads of execution

• What is a thread?
2

PC

SP



What are threads?
• Threads = light weight processes
• Why? A process may want to run multiple copies of itself

• If one copy blocks due to blocking system call, another copy can still run
• Multiple copies can run in parallel on multiple CPU cores to speed up work

• Why not have multiple child processes running the same program?
• Too much memory consumed by identical memory images
• Needs IPC to share information across processes

• A process can create multiple threads (default: single thread)
• Multiple threads share same memory image of process, saves memory
• Threads run independently on same code (if one blocks, another can still run)
• Threads can run in parallel on multiple cores at same time
• Threads can share data more easily



Multi-threaded process
• A thread is like another copy of a 

process that executes 
independently from parent

• Threads shares the same code, 
global/static data, heap

• Each thread has separate stack for 
independent function calls

• Each thread has separate PC, 
running different code

• Each thread has separate CPU 
context during execution

4

PC1

PC2

SP2

SP1

Image credit: OSTEP



Concurrency vs. parallelism
• Understand the difference between concurrency and parallelism

• Concurrency: running multiple threads/processes at the same time, even on 
single CPU core, by interleaving their executions

• Parallelism: running multiple threads/processes in parallel over different CPU 
cores

• With multiple threads, process can get better performance on multicore 
systems via parallelism

• Example: matrix multiplication can be easily parallelized, with different threads 
operating on different parts of the matrix

• Even if no parallelism (single core), concurrency of threads ensures 
effective use of CPU when one of the threads blocks

• Example: if one thread of a server blocks on I/O read, another can still run
5



POSIX threads

• In Linux, POSIX threads (pthreads) library allows 
creation of multiple threads in a process

• Each thread is given a start function where its 
execution begins

• Threads execute independently from parent after 
creation

• Parent can wait for threads to finish (optional)

• Several such threading libraries exist in different 
programming languages

void f1() {
…

}

void f2() {
…

}

main() {
…
pthread_t t1, t2
pthread_create(&t1, .., f1,..)
pthread_create(&t2, .., f2,..)
…

pthread_join(t1, ..)
pthread_join(t2, ..)

}

void f1() {
…

}

void f2() {
…

}

main() {
…
pthread_t t1, t2
pthread_create(&t1, .., f1,..)
pthread_create(&t2, .., f2,..)
…

pthread_join(t1, ..)
pthread_join(t2, ..)

}



Creating threads using pthreads API

7



Scheduling threads
• OS schedules threads that are ready to run independently, like processes
• The context of a thread (PC, registers) is saved into/restored from thread 

control block (TCB)
• Every PCB has one or more linked TCBs

• Threads that are scheduled independently by kernel are called kernel 
threads

• E.g., Linux pthreads are kernel threads
• In contrast, some libraries provide user-level threads

• User program sees multiple threads, but kernel is aware of fewer threads
• Multiple such user threads are seen as one thread by kernel, may not be 

scheduled in parallel for this reason
• Why use user threads then? Ease of programming

8



Example: threads with shared data

• Shared global counter
• Two threads update same 

counter 10^7 times
• What is expected output 

after both threads finish?

9



Threads with shared data: what happens?
• What do we expect? Two threads, each increments counter by 10^7, 

so 2X10^7

• Sometimes, a lower value. Why?

10



Understanding shared data access
• The C code “counter = counter + 1” is compiled into multiple 

instructions
• Load counter variable from memory into register
• Increment register
• Store register back into memory of counter variable

load counter  reg
reg = reg + 1
store reg counter



Understanding shared data access
• What happens when two threads run this line of code concurrently?

• Counter is 0 initially
• T1 loads counter into register, increment reg
• Context switch, register (value 1) saved
• T2 runs, loads counter 0 from memory
• T2 increments register, stores to memory
• T1 resumes, stores register value to counter
• Counter value rewritten to 1 again
• Final counter value is 1, expected value is 2

load counter  reg
reg = reg + 1
(context switch, save reg)

(resume, restore reg)
store reg counter

T1

load counter  reg
reg = reg + 1
store reg counter

T2



Race conditions, critical sections

• Incorrect execution of code due to concurrency is called race condition
• Due to unfortunate timing of context switches, atomicity of data update violated

• Race conditions happen when we have concurrent execution on shared data
• Threads sharing common data in memory image of user processes
• Processes in kernel mode sharing OS data structures

• We require mutual exclusion on some parts of user or OS code
• Concurrent execution by multiple threads/processes should not be permitted

• Parts of program that need to be executed with mutual exclusion for correct 
operation are called critical sections

• Present in multi-threaded programs, OS code

• How to access critical sections with mutual exclusion? Using locks (next topic)


