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Trap handling and context switching



Recap: OS runs processes
• OS manages multiple active processes concurrently
• What is a process?

• Memory image in RAM = compiled code, data (compile-time, run-time)
• CPU context (in CPU registers when running, else saved in PCB)
• Other things like I/O connections, ..

• Processes created by fork from parent processes
• Periodically, OS scheduler loops over ready processes

• Find a suitable process to run, save old process context, restore new context

• Once process is context switched in, OS is out of picture, CPU in user 
mode, runs user code directly

• When does the OS run again? 



User mode vs. Kernel mode of a process
• CPU runs user code in user mode (low privilege) most of the time
• CPU switches to kernel mode execution when

• Process makes system call, needs OS services
• External device needs attention, raises interrupt
• Some fault has happened during program execution

• All such events are called traps: CPU “traps” into OS code
• CPU shifts to high privilege level (kernel mode), runs OS code to handle event
• Later, CPU switches to low privilege level, back to user code in user mode

• Process P goes to kernel mode to run OS code, but it is still process P 
itself that is in running state

• OS not a separate process, runs in kernel mode of existing processes
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Function call vs. system call

• What happens when a user program makes a function call?
• Allocate memory on user stack for function arguments, local variables, ..
• Push return address, PC jumps to function code
• Push register context (to resume execution when function returns)
• Execute function code
• When returning from function, pop return address, pop register context

• System call also must
• Use a stack to push register context 
• Save old PC, change PC to point to OS code to handle system call
• Run system call, restore context back to user code
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What is different for a system call?

• Changing PC in function call vs. system call
• In function call, address of function code known in executable, can jump to 

function code directly using a CPU instruction (“call” in x86)
• For system call, cannot trust user to jump to correct OS code (what if user 

jumps to inappropriate privileged code?)

• Saving register context on stack in function call vs. system call
• In function call, register context is saved and restored from user stack
• For system call, OS does not wish to use user stack (what if user has setup 

malicious values on the stack?)

• We require: a secure stack, a secure way of jumping to OS code



Kernel stack and IDT

• Every process uses a separate kernel stack for running kernel code
• Part of PCB of process, in OS memory, not accessible in user mode
• Used like user stack, but for kernel mode execution
• Context pushed on kernel stack during system call, popped when done

• To set PC, CPU accesses Interrupt Descriptor Table (IDT)
• Data structure with addresses of kernel code to jump to for events
• Setup by OS during bootup, not accessible in user mode
• CPU uses IDT to locate address of OS code to jump to

• Together: secure way of locating OS code, secure stack for OS to run



Hardware trap instruction

• When user code wants to make system call, it invokes special “trap 
instruction” with an argument

• Example: “int n” in x86, argument “n” indicates type of trap (syscall, interrupt)
• The value of “n” specifies index into IDT array, which OS function to jump to

• When CPU runs the trap instruction:
• CPU moves to higher privilege level
• CPU shifts stack pointer register to kernel stack of process
• Register context is saved on kernel stack (part of PCB)
• Address of OS code to jump to is obtained from IDT, PC points to OS code
• OS code starts to run, on a secure stack



Trap handling
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IDT lookup

• IDT configured by OS
• Base address of IDT stored in 

CPU register
• Upon trap, CPU looks up IDT to 
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Why trap instruction?

• Need a secure way of jumping to OS code to handle traps
• User code cannot be trusted to jump to correct OS code
• Only CPU can be trusted to handover control from user to OS securely

• Who calls trap instruction?
• System call code in a language library (printf invokes system call via int n)
• External hardware raises interrupt, causes CPU to execute “int n”
• Argument “n” indicates whether system call /IRQ number of hardware device

• Across all cases, the mechanism is: save context on kernel stack, 
switch to OS address in IDT, run OS code to handle trap



Return from trap

• When OS is done handling syscall or interrupt, it calls a special 
instruction return-from-trap

• Restore context of CPU registers from kernel stack
• Change CPU privilege from kernel mode to user mode
• Restore PC and jump to user code after trap

• User process unaware that it was suspended, resumes execution at 
the point it stopped before 

• Always return to the same user process from kernel mode? No
• Before returning to user mode, OS checks if it must switch to another process
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Why switch between processes?
• Sometimes when OS is in kernel mode, it cannot return back to the 

same process that was running in user mode before
• Process has exited or must be terminated (e.g., segfault)
• Process has made a blocking system call

• Sometimes, the OS does not want to return back to the same process
• The process has run for too long
• Must timeshare CPU with other processes

• In such cases, OS performs a context switch from one process to 
another

• Switch from kernel mode of one process to kernel mode of another
• OS scheduler decides which process to run next and switches to it
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OS scheduler
• OS maintains list of all active processes (PCBs) in a data structure

• Processes added during fork, removed after clean up in wait

• OS scheduler is special code in the OS that periodically loops over this 
list and picks processes to run

• Basic outline of scheduler code
• When invoked, save context of currently running process in its PCB
• Loop over all ready/runnable processes and identify a process to run next
• Restore context of new process from PCB and get it to run on CPU
• Repeat this process as long as system is running



Scheduling and context switching

• OS scheduling involves two tasks
• Policy to pick which process to run (next lecture)
• Mechanism to switch to that process (this lecture)

• Non preemptive (cooperative) schedulers are polite
• Switch only if process blocked or terminated

• Preemptive (non-cooperative) schedulers can switch even when 
process is ready to continue

• CPU generates periodic timer interrupt
• After servicing interrupt, OS checks if the current process has run for too long
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Mechanism of context switch (1)
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Mechanism of context switch (2)
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Mechanism of context switch (3)
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Mechanism of context switch (4)
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kernel context and user 
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Understand saving and restoring context
• Context (PC and other CPU registers) saved on the kernel stack 

in two different scenarios
• When going from user mode to kernel mode, user context 

(e.g., which instruction of user code you stopped at) is saved 
on kernel stack by the trap instruction

• Restored by return-from-trap when process goes to user mode

• During a context switch, kernel context (e.g., where you 
stopped in the OS code) is saved on the kernel stack by the 
context switching code

• Restored when the process is ready to run and switched back in again
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