Introduction to xv6

Mythili Vutukuru
CSE, IIT Bombay



xv6: a simple teaching OS

* xv6 is a simple OS for easy teaching of OS concepts
* Two versions, one for x86 hardware and one for RISC-V hardware
* This series of lectures based on x86 version
e https://github.com/mit-pdos/xv6-public

 Easy to read code, simple exercises to write OS code
* Much simpler than real OS like Linux, but basic concepts remain same
* Runs inside QEMU emulator, but can also run on hardware



OS code in C or assembly?

* OSis also like any other program run by CPU, but it is the most
important program that manages other programs

* OS code mostly written in a high-level language like C, compiled into
executable, loaded at boot time

* But some parts of OS are written directly in assembly language (CPU
instructions that the hardware can understand)

* Why not write everything in C? Not possible to express certain low level
actions performed by OS in high level language

 Basic understanding of x86 assembly code required for understanding
xv6 OS code in this course



Learn how to use xv6

* xv6 source code is available online
* xv6 kernel code
* User programs to test OS functionality, e.g., simple shell programs like Is

* Instructions have been provided for you to learn how to:

e Set up QEMU and other software needed to run xv6 (on your personal
laptops; the lab machines should have all of this)

* Compile and run xv6, for example, execute simple shell commands like “Is” in
the xv6 shell

* Add your own kernel code and user programs, compile and rerun xv6 again



Reference: x86 registers

* General purpose registers: store data during computations (eax, ebkx,
ecx, edx, esi, edi)

* Pointers to stack locations: base of stack (ebp) and top of stack (esp)

* Program counter or instruction pointer (eip): next instruction to
execute

* Control registers: hold control information or metadata of a process
(e.g., cr3 has information related to memory of process)

* Segment registers (cs, ds, es, fs, gs, ss): information about segments
(related to memory of process)



Reference: x86 instructions

* Load/store: mov src, dst
* mov %eax, %ebx (copy contents of eax to ebx)
* mov (%eax), %ebx (copy contents at the address in eax into ebx)

* mov 4(%eax), %ebx (copy contents stored at offset of 4 bytes from
address stored at eax into ebx)

* Push/pop on stack: changes esp
* push %eax (push contents of eax onto stack, update esp)
* pop %eax (pop top of stack onto eax, update esp)

* jmp sets eip to specified address
 call to invoke a function, ret to return from a function
* Variants of above (movw, pushl) for different register sizes



Reference: Mechanics of function call

 Local variables, arguments, return address stored on stack for
duration of function call

* What happens in a function call?

* Push function arguments on stack
call fn (instruction pushes return address on stack, jumps to function)

Allocate local variables on stack

Run function code
ret (instruction pops return address, eip goes back to old value)

 All of this is automatically done by the C compiler for you, and is part
of the C calling convention.



Reference: Caller and callee save registers

* What about values in registers that existed before function call?
Registers can get clobbered during a function call, so how can
computation resume?

* Some registers saved on stack by caller before invoking the function (caller

save registers). Function code (callee) can freely change them, caller restores
them later on.

* Some registers saved by callee function and restored after function ends
(callee save registers). Caller expects them to have same value on return.

* Return value stored in eax register by callee (one of caller save registers)

* All of this is automatically done by C compiler (C calling convention)



Reference: More details of function call

e Anatomy of a function call

Push caller save registers (eax, ecx, edx)

* Push arguments in reverse order

Return address (old eip) pushed on stack by the call instruction
Push old ebp on stack

» Set ebp to current top of stack (base of new “stack frame” of the function)

Push local variables and callee save registers (ebx, esi, edi)
Execute function code

Pop stack frame and restore old ebp

Return address popped and eip restored by the ret instruction

 Stack pointers: ebp stores address of base of current stack frame and esp
stores address of current top of stack

Function arguments are accessible from looking under the stack base pointer



