
Mythili Vutukuru
CSE, IIT Bombay

Introduction to xv6

xv6: a simple teaching OS

• xv6 is a simple OS for easy teaching of OS concepts
• Two versions, one for x86 hardware and one for RISC-V hardware
• This series of lectures based on x86 version
• https://github.com/mit-pdos/xv6-public

• Easy to read code, simple exercises to write OS code
• Much simpler than real OS like Linux, but basic concepts remain same
• Runs inside QEMU emulator, but can also run on hardware

OS code in C or assembly?

• OS is also like any other program run by CPU, but it is the most
important program that manages other programs

• OS code mostly written in a high-level language like C, compiled into
executable, loaded at boot time

• But some parts of OS are written directly in assembly language (CPU
instructions that the hardware can understand)

• Why not write everything in C? Not possible to express certain low level
actions performed by OS in high level language

• Basic understanding of x86 assembly code required for understanding
xv6 OS code in this course

Learn how to use xv6

• xv6 source code is available online
• xv6 kernel code
• User programs to test OS functionality, e.g., simple shell programs like ls

• Instructions have been provided for you to learn how to:
• Set up QEMU and other software needed to run xv6 (on your personal

laptops; the lab machines should have all of this)
• Compile and run xv6, for example, execute simple shell commands like “ls” in

the xv6 shell
• Add your own kernel code and user programs, compile and rerun xv6 again

Reference: x86 registers
• General purpose registers: store data during computations (eax, ebx,

ecx, edx, esi, edi)
• Pointers to stack locations: base of stack (ebp) and top of stack (esp)
• Program counter or instruction pointer (eip): next instruction to

execute
• Control registers: hold control information or metadata of a process

(e.g., cr3 has information related to memory of process)
• Segment registers (cs, ds, es, fs, gs, ss): information about segments

(related to memory of process)

5

Reference: x86 instructions
• Load/store: mov src, dst

• mov %eax, %ebx (copy contents of eax to ebx)
• mov (%eax), %ebx (copy contents at the address in eax into ebx)
• mov 4(%eax), %ebx (copy contents stored at offset of 4 bytes from

address stored at eax into ebx)
• Push/pop on stack: changes esp

• push %eax (push contents of eax onto stack, update esp)
• pop %eax (pop top of stack onto eax, update esp)

• jmp sets eip to specified address
• call to invoke a function, ret to return from a function
• Variants of above (movw, pushl) for different register sizes

6

Reference: Mechanics of function call

• Local variables, arguments, return address stored on stack for
duration of function call

• What happens in a function call?
• Push function arguments on stack
• call fn (instruction pushes return address on stack, jumps to function)
• Allocate local variables on stack
• Run function code
• ret (instruction pops return address, eip goes back to old value)

• All of this is automatically done by the C compiler for you, and is part
of the C calling convention.

Reference: Caller and callee save registers

• What about values in registers that existed before function call?
Registers can get clobbered during a function call, so how can
computation resume?

• Some registers saved on stack by caller before invoking the function (caller
save registers). Function code (callee) can freely change them, caller restores
them later on.

• Some registers saved by callee function and restored after function ends
(callee save registers). Caller expects them to have same value on return.

• Return value stored in eax register by callee (one of caller save registers)

• All of this is automatically done by C compiler (C calling convention)

Reference: More details of function call

• Anatomy of a function call
• Push caller save registers (eax, ecx, edx)
• Push arguments in reverse order
• Return address (old eip) pushed on stack by the call instruction
• Push old ebp on stack
• Set ebp to current top of stack (base of new “stack frame” of the function)
• Push local variables and callee save registers (ebx, esi, edi)
• Execute function code
• Pop stack frame and restore old ebp
• Return address popped and eip restored by the ret instruction

• Stack pointers: ebp stores address of base of current stack frame and esp
stores address of current top of stack

• Function arguments are accessible from looking under the stack base pointer

