Locking in xv6

Mythili Vutukuru
CSE, IIT Bombay

Locking in xv6

* No threads in xv6, no two user programs can access same memory image
* No need for userspace locks like pthreads mutex

* However, scope for concurrency in xv6 kernel

* Two processes in kernel mode in different CPUs can access same kernel data
structures like ptable

e Even in single core, when a process is running in kernel mode, another trap occurs,
trap handler can access data that was being accessed by previous kernel code

* Solution: spinlocks used to protect critical sections
e Limit concurrent access to kernel data structures that can result in race conditions

 xv6 also has a sleeping lock (built on spinlock, not discussed)

Spinlocks in xv6

e Acquiring lock: uses xchg x86 atomic instruction (test and set)
* Atomically set lock variable to new value and returns previous value
* If previous value is O, it means free lock has been acquired, success!

* If previous value is 1, it means lock is held by someone, continue to spin in a busy

while loop till success 1573 void
1574 acquire(struct spinlock *1k)

1575 {
1576 pushcli(); // disable interrupts to avoid deadlock.
1577 if(holding(1k))

1578 panic("acquire");

1500 // Mutual exclusion Tock. 1579
1501 struct spinlock { 1580 // The xchg is atomic.
1502 | uint Tocked; // Is the Tock held? 1581 | while(xchg(&lk->1ocked, 1) != 0)
1503

] 1582
1504 // For debugging: 1583
o sl “name;b 7 e 1OCk? 1584 // Tell the C compiler and the processor to not move loads or stores
1506 struct cpu *cpu; // The cpu holding the lock. pithie

: g 1585 // past this point, to ensure that the critical section’s memory

1507 uint pcs[10]; // The call stack (an array of progran ; ;i
1508 // that Tocked the lock. 1586 // references happen after the lock is acquired.
1509 }: 1587 __sync_synchronize();

1588

1589 // Record info about lock acquisition for debugging.
1590 Tk—->cpu = mycpu();

1591 getcallerpcs(&lk, Tk—>pcs);

1592 }

Disabling interrupts for kernel spinlocks (1)

* When acquiring kernel spinlock, disables interrupts on CPU core: why?
* What if interrupt and handler requests same lock: deadlock
* Interrupts disabled only on local core, OK to spin for lock on another core

* Why disable interrupts before even acquiring lock? (otherwise, vulnerable
window after lock acquired and before interrupts disabled)

* Disabling interrupts not needed for userspace locks like pthread mutex
* Kernel interrupt handlers will not deadlock for userspace locks

Process in kernel mode Process in kernel mode O arother core
. : Kernel spinlock L acquired
Kernel spinlock L acquired

| itch handl Interrupt handler Spin to acquire L
nterrupt, switch to trap handler P FRITHEA SEETIAN ooin

Spin to acquire L Spin
DEADLOCK Spinlock released Spin
Spinlock L acquired

Disabling interrupts for kernel spinlocks (2)

* Function pushcli: disables interrupts on
CPU core before spinning for lock

* Interrupts stay disabled until lock is
released

* What if multiple spinlocks are
acquired?
* Interrupts must stay disabled until all locks
are released

* Disabling/enabling interrupts:

* pushcli disables interrupts on first lock
acquire, increments count for future locks

* popcli decrements count, renables
interrupts only when all locks released

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687

// Pushcli/popcli are Tike cli/sti except that they are matched:
// it takes two popcli to undo two pushcli. Also, if interrupts
// are off, then pushcli, popcli Teaves them off.

void
pushcli (void)
{

int eflags;

eflags = readeflags();

e i) o

if(mycpu()—>ncli == 0)
mycpu()—->intena = eflags & FL_IF;

mycpu()->ncli1 += 1; |

void
popcli(void)
{
if(readeflags QO&FL_IF)
panic("popcli - interruptible");
| if(—mycpu()->ncli < 0) |
panic(popcli);
if(mycpu()—>ncli == 0 && mycpu()->intena)
3 o B 1

2757 void
2758 scheduler(void)

Recap: Context switching in Xv6 (1) & wne oc

2761 struct cpu *c = mycpu();
2762 c->proc = 0;

2763
) Every CPU has a SChedUIer thread S;Eg fo;ﬁ;éie{lbh interrupts on this processor.
(special process that runs scheduler 2766 stiO;
COde) ;;gg ;éqt?iz(g\;i;bﬁgc’):zi)fab]e looking for process to run.

. 277 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
* Scheduler goes over list of processes /jﬁ/ if(pstate. 1= RUNABLE)

continue;

and SWitCheS tO One Of the runnable g;;i // Switch to chosen process. It is the process’s job
2775 // to release ptable.lock and then reacquire it
Ones 2776 // before jumping back to us.
2777 Cc->proc = p;
. . 2778 switchuvm(p);
* The special function “swtch” performs = s,
the actual context switch 278 swich((co>schedulen), p->contex);
* Save context on kernel stack of old process 3 P S ——
» Restore context from kernel stack of new e g T T TESERSER DO R Bk
prOCESS g;gg ie'lease(&ptab]e.]ock);
=
2791 }

Recap: Context switching in xv6 (2)

e After running for some time, the process
switches back to the scheduler thread,
when:

* Process has terminated (exit system call)
* Process needs to sleep (e.g., blocking read

2662
2663
2664
2665
2666 }

// Jump into the scheduler, never to return.
curproc->state = ZOMBIE;

sched();

panic("zombie exit");

2894 // Go to sleep.
2895 p->chan = chan;

system call)

* Process yields after running for long (timer
interrupt)

* Process calls “sched” which calls “swtch”
to switch to scheduler thread again

* Scheduler thread runs its loop and picks
next process to run, and the story repeats

— 2896 p->state = SLEEPING;
2897
2898 sched();
2899

2826 // Give up the CPU for one scheduling round.
2827 void

2828 yield(void)

2829 {

2830
2831
2832
2833

2834 }

acquire(&ptable.lock);
myproc()->state = RUNNABLE;
sched();
release(&ptable.lock);

2409 struct {
2410 struct spinlock Tock;

ptab|e|OCk (1) 2411 struct proc proc[NPROC];

2412 } ptable;

* The process table protected by a lock, any access to ptable must be
done with ptable.lock held

* Normally, a process in kernel mode acquires ptable.lock, changes ptable
in some way, releases lock

* Example: when allocproc allocates new struct proc

e But during context switch from process P1 to P2, ptable structure is
being changed all through context switch, so when to release lock?

e P1 acquires lock, switches to scheduler, switches to P2, P2 releases lock

P1 scheduler P2

Acquire ptable.lock Release ptable.lock

ptable.lock (2)

Every function that calls sched() to give up CPU will do
so with ptable.lock held

Which functions invoke sched() to give up CPU?
* Yield: process gives up CPU due to timer interrupt
* Sleep: when process wishes to block
* Exit: when process terminates

Every function where a process resumes after being
scheduled release ptable.lock

What functions does a process resume after swtch?
* Yield: resuming process after yield is done

* Sleep: resuming process that is waking up after sleep
* Forkret: for newly created processes

Purpose of forkret: to release ptable.lock
* New process then returns from trap like its parent

2826
2827
2828
2829
2830
2831
2832
2833
2834

2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866

// Give up the CPU for one scheduling round.
void

yield(void)

{

| acquire(&ptable. lock) ;|

myproc()->state = RUNNABLE;

sched();
| release(&ptable. lock) ;]|
1

void
forkret(void)
{
static int first = 1;
// Still holding ptable.lock from scheduler.
[TeTeasel&prabie. Tock)) |

if (first) {
// Some initialization functions must be run i
// of a regular process (e.g., they call sleep
// be run from main().
first = 0;
1init(ROOTDEV) ;
initlog(ROOTDEV);

P1 - scheduler P2
pta b | e. | OC k (3) Acquire ptable.lock Release ptable.lock

2757 void

. . 2758 scheduler(void)
* Scheduler goes into loop with lock - N————
held o coaeem
2763
. . 2764 for(;;){
° Acqu”-e ptablejock in P1 % 2765 é:ig?bm interrupts on this processor.
SCthUIer piCkS Pz 9 release in P2 ;;2; // Loop over process table Tooking for process to run.
2769 acquire(&ptable.lock);
. . 2770 tor(p = ptable.proc; < able.proc 5 pHt
* Later, acquire ptable.lock in P2 2 7L iCpoerate 1o RABLEY o P
. . 2772 continue;
SChedUIer pICkS P3 9 release In P3 5;;3 // Switch to chosen process. It is the process’s job
. . . 2775 L te re'lea‘lse ptab]e.'lock and then reacquire it
* Periodically, end of looping over all R Rl e
R 2778 switchuvm(p);
processes, releases lock temporarily 2779 poastate = RUNNING;
« What if no runnable process found 2 swiechkmos e
due tO |nterru ptS bE'ng d|Sab|ed? g;gi // Process is done running for now.
. 2785 // It should have changed its p->state before coming back.
Release lock, enable interrupts, allow 2786 coproc - 0;
processes to become runnable. s (elessdcagEans Jos;
2790 }

2791 }

