
Mythili Vutukuru
CSE, IIT Bombay

Memory management in xv6

Memory management in xv6
• 32-bit OS, so 2^32=4GB virtual address space for every process
• 4KB pages, so 32 bit VA = 20 bit page number + 12 bit offset
• Each PTE has 20 bit physical frame number, and some flags

• PTE_P indicates if page is valid/present (if not set, access will cause page fault)
• PTE_W indicates if writeable (if not set, only reading is permitted)
• PTE_U indicates if user page (if not set, only kernel can access the page)

• Address translation: use page number (top 20 bits of virtual address)
to index into page table, find physical frame number, add 12-bit offset

2

Two level page table in xv6
• xv6 has two-level page table

• 1024 “inner” page table pages, each with 1024 PTEs
• Outer page directory stores PTE-like references to 1024 inner page table pages
• Physical address of outer page directory is stored in CPU’s cr3 register, used by MMU

during address translation

• 32 bit virtual address = 10 bits index into page directory, next 10 bits index
into inner page table, last 12 bits are offset within page

• PFN from PTE + offset = physical address

3

Virtual address space in xv6
• Virtual address space [0, 4GB]
• Physical address space [0, PHYSTOP]

where PHYSTOP is max physical memory
that can be used

• Virtual address space contains
• Low virtual addresses: user code/data, guard

page, stack, expandable heap
• High virtual address starting at KERNBASE

(2GB): kernel code/data, free pages that OS
assigns to user processes, memory reserved
for I/O devices, …

4

Code/data from
executable

Guard page

Stack

Heap

Kernel code/data

Free pages

0

KERNBASE
(2GB)

Page table mappings

• Page table contains two sets of PTEs
• User entries: low VA to PA used to

process for code, data, stack, heap
• Kernel entries: high VA to PA

containing OS code/data/free pages
• [KERNBASE, KERNBASE+PHYSTOP]

mapped to [0, PHYSTOP]

• Kernel page table entries identical
across all processes

Physical address space

0
OS code/data

Free pages
for user processes

PHYSTOP

Code/data from
executable

Guard page

Stack

Heap

Kernel code/data

Free pages

KERNBASE

Virtual address space

KERNBASE +
PHYSTOP

Memory allocation to user processes in xv6
• How does OS implement various memory system calls?
• xv6 OS maintains list of free pages available in DRAM

• All memory in [0, PHYSTOP] not used by OS is added to free list

• Whenever new process memory image (address space) needs to be
created during system calls (e.g., fork, exec), OS allocates pages from
free list to process, updates its page table

• Processes can also request more pages from OS using sbrk system call
• sbrk invoked by malloc to expand heap
• xv6 has no mmap system call

6

Memory allocation in the kernel

• OS needs memory for its data structures, must allocate it from its free
pages only

• For large allocations, OS allocates a page for itself
• For smaller allocations, OS implements its own versions of slab

allocator or buddy allocator
• Cannot use libc and malloc in kernel!
• Slab allocator for common data structures, e.g., slab of PCBs
• Buddy allocator for variable sized allocations
• OS does not use very general variable sized allocation for efficiency reasons

• xv6 uses only page sized allocations, other data structures are fixed
size. e.g., ptable

7

Maintaining free memory in xv6
• After boot up, RAM contains OS code/data

and free pages (physical memory frames)
• OS collects all free pages into a free list, so

that they can be allocated to user processes
• Free list is a linked list, pointer to next free

page embedded within previous free page
• Kernel maintains pointer to first page in the

free list
• Pages from free list allocated for

code/data/stack/heap as well as page table
of process

8

Managing free pages in xv6: kalloc and kfree
• Anyone who needs a free page calls kalloc()

• Sets free list pointer to next page and returns first free page on list
• When memory needs to be freed up, kfree() is called

• Add free page to head of free list, update free list pointer

9

Allocating memory to user processes

• System calls like fork, exec allocate memory from OS via kalloc()
• How is address space of process constructed in fork/exec?

• Start with one page for the outer page directory of child
• Allocate inner page tables as needed (if contains valid entries)
• Add page table mappings for kernel code/data (starting at 2GB)
• Allocate physical frames to store memory contents of process (code/data

from executable, empty stack, ..) and map these into page table

• How is address space of process expanded in sbrk?
• Allocate physical frames for new virtual addresses
• Add mappings for newly allocated pages in page table

Functions to build page table (1)

• Every page table begins with
setting up kernel mappings
in setupkvm()

• Outer pgdir allocated
• Kernel mappings defined in

“kmap” added to page table
by calling “mappages”

• After setupkvm(), user page
table mappings added

11

Functions to build page table (2)

• Page table entries added by
“mappages”

• Arguments: page directory,
range of virtual addresses,
physical addresses to map to,
permissions of the pages

• For each page, walks page
table, get pointer to PTE via
function “walkpgdir”, fills it
with physical address and
permissions

12

Functions to build page table (3)

• Function “walkpgdir” walks
page table, returns PTE of a
virtual address

• Can allocate inner page table
if it doesn’t exist (depending
on value of last arg)

13

Recap: fork system call implementation
• Parent allocates new process in ptable, copies parent state to child
• Child process set to runnable, scheduler runs it at a later time
• Return value in parent is PID of child, return value in child is set to 0

14

Fork: copying memory image

• Function “copyuvm” called by
parent to copy parent memory
image to child

• Create new page table for child
• Walk through parent memory image

page by page and copy it to child
• For each page in parent

• Fetch PTE, get physical address,
permissions

• Allocate new frame for child, copy
contents of parent’s page to new page
of child

• Add a PTE from virtual address to
physical address of new page in child
page table

15

Copy-on-write fork

• Real operating systems do copy-on-write: child page table also points to
parent pages until either of them modifies it

• Here, xv6 creates separate memory images for parent and child right away

• Copy-on-write fork (not present in xv6, but easy to do):
• During fork, new page table allocated to child
• Child page table entries have physical frame numbers of parent memory image

pages only, no copy created for child
• Parent’s memory image is marked as read only
• When parent or child tries to modify, MMU traps to OS
• As part of trap handling, separate copy of memory image created
• Finally, two separate copies of memory image for parent and child

Growing memory image: sbrk
• Initially heap is empty, program

“break” is at end of stack
• sbrk() system call invoked by malloc

to expand heap
• Calls “growproc” to grow memory

• To grow memory, allocuvm
allocates new pages, adds
mappings into page table for new
pages

• Whenever page table updated,
must update cr3 register and TLB
(done even during context
switching)

17

allocuvm: grow address space
• Walk through new virtual

addresses, page by page
• Allocate new frame, add

mapping to page table
with suitable user
permissions

• Similarly deallocuvm
shrinks memory image,
frees up pages

18

Maximum addressable
memory in xv6

• PA=P is initially mapped into kernel
address space at VA=P+2GB

• When assigned to user, P is assigned
another VA=U (<2GB)

• Kernel and user access same memory
using different virtual addresses

• Every physical address may be
mapped to 2 virtual addresses in xv6

• Max virtual address is 4GB, so xv6 can
only handle max physical address 2GB

• Real kernels deal with this better, e.g.,
remove kernel VA-PA mapping once
assigned to user process

0

OS code/data

Free pages
for user processes

PHYSTOP

Code/data from
executable

Guard page

Stack

Heap

Kernel code/data

Free pages

KERNBASE

Virtual address space

KERNBASE +
PHYSTOP

PA = P

VA = U

VA = P + 2GB

Physical address space

Exec system call (1)
• Read ELF binary file from disk into memory
• Start with new page table (not overwriting old page table)
• Use function “loaduvm” to load executable from disk to memory

20

Exec system call (2)

• Function allocuvm allocates
new memory frame, updates
page table entries

• Function loaduvm reads the
corresponding part of
executable from disk into the
allocated memory frame

• Calls to allocuvm and
loaduvm repeated for each
segment of executable

Exec system call (3)

• After executable is copied
to memory image, allocate
2 pages for stack (one is
guard page, permissions
cleared, access will trap)

• Push exec arguments onto
user stack for main
function of new program

22

Exec system call (4)

• If no errors so far, switch to new
page table that is pointing to new
memory image

• If any error, go back to old memory
image (exec returns with error)

• Set eip in trapframe to start at
entry point of new program

• Returning from trap, process will
run new executable

23

