
Mythili Vutukuru
CSE, IIT Bombay

Process system calls in xv6



xv6 system calls
• In xv6, as in other systems, system 

calls are made by user library 
functions

• User code invokes library function only

• System calls available to user 
programs are defined in user library 
header “user.h”

• Equivalent to C library headers (xv6 
doesn’t use standard C library)

2



What happens on a system call?
• The user library makes the actual system 

call to invoke OS code
• NOT a regular function call to OS code as 

it involves CPU privilege level change
• User library invokes special “trap” 

instruction called “int” in x86 (see usys.S) 
to make system call

• The trap (int) instruction causes a jump to 
kernel code that handles the system call

• More on trap instruction later

3



Kernel implementation of syscalls

• The trap instruction invokes (via a series of events that we will see 
later) the various syscall implementations in the OS

• The user code pushes syscall number into eax (notice prev slide)
• Once we trap into the OS syscall code, the corresponding syscall

function is invoked based on the value of eax
• Note that the userspace function names and kernel functions names 

of syscalls may be the same, but do not confuse them
• Userspace library has a function “fork” which simply traps into the OS
• When in the OS, we invoke OS function “fork” which runs at a higher privilege 

level and does the actual child process creation



xv6: fork system call implementation

5



xv6: fork system call explanation

• Parent process invokes fork to create new child
• Allocates new process in ptable, get new PID for child
• Variable “np” is pointer to newly allocated struct proc of child
• Variable “currproc” is pointer to struct proc of parent
• Copies information (memory, files, size, …) from currproc to np

• Child process set to runnable, scheduler runs it at a later time
• Return value in parent is PID of child
• Return value in child is set to 0 (by changing child’s EAX register)

6



xv6: exit system call implementation

7



xv6: exit system call explanation

• Exiting process cleans up some state (e.g., close files)
• Wakes up parent process that may be waiting to reap 
• Passes abandoned children (orphans) to init
• Marks itself as zombie and invokes scheduler, never gets scheduled 

again

8



9

xv6: wait system call implementation



xv6: wait system call explanation

• Search for dead children in process table
• If dead child found, clean up memory of zombie, return its PID
• If no children, return -1, no need to wait
• If children exist but haven’t terminated yet, wait until one dies



xv6: exec system implementation overview

• Copy new executable into memory from disk
• Create new stack, heap
• Copy command line arguments to new stack
• Switch process page table to use new memory image
• Process begins to run new code after system call ends
• Revert back to old memory image in case of any error

11


