Process management in xv6

Mythili Vutukuru
CSE, IIT Bombay

PCB In xv6: struct proc

2334 enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349

2350
2351 };
2352

// Per-process state
struct proc {

uint sz;

pde_t* pgdir;

char *kstack;

enum procstate state;
int pid;

struct proc *parent;
struct trapframe *tf;
struct context *context;
void *chan;

int killed;

struct file *ofile[NOFILE];
struct inode *cwd;

char name[16];

// Size of process memory (bytes)
// Page table

// Bottom of kernel stack for this process
// Process state

// Process ID

// Parent process

// Trap frame for current syscall
// swtch() here to run process

// If non-zero, sleeping on chan
// If non-zero, have been killed
// Open files

// Current directory

// Process name (debugging)

struct proc: page table

* Every instruction or data item in the memory image of process
(code/data, stack, heap, etc.) has an address
* Virtual addresses, starting from O

» Actual physical addresses in memory can be different (all processes cannot
store their first instruction at address 0)

* Page table of a process maintains a mapping between the virtual
addresses and physical addresses

* Page table used to translate virtual addresses to physical addresses

struct proc: kernel stack

* Stack to store CPU context when process jumps to kernel mode from
user mode, or when process is context switched out
* Why separate stack? OS does not trust user stack
» Separate area of memory in the kernel, not accessible by regular user code
 Linked from struct proc of a process

struct proc: list of open files

* Array of pointers to open files

* When user opens a file, a new entry is created in this array, and the index of
that entry is passed as a file descriptor to user

* Subsequent read/write calls on a file use this file descriptor to refer to the file

* First 3 files (array indices 0,1,2) open by default for every process: standard
input, output and error

* Subsequent files opened by a process will occupy later entries in the array

Process table (ptable) in xv6

* Ptable in xv6 is a fixed-size array of all processes
* Real kernels have dynamic-sized data structures

2409 struct {

2410 struct spinlock Tock;
2411 struct proc proc[NPROC];
2412 } ptable;

CPU scheduler in xv6

* The OS loops over all runnable processes in ptable, picks one, and
sets it running on the CPU

2768 // Loop over process table Tooking for process to run.
2769 acquire(&ptable.lock);

2770 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
2771 if(p->state != RUNNABLE)

2772 continue;

2773

2774 // Switch to chosen process. It is the process’s job
2775 // to release ptable.lock and then reacquire 1t
2776 // before jumping back to us.

2IT7 C->proc = p;

2778 switchuvm(p);

2779 p—>state = RUNNING;

