
Mythili Vutukuru
CSE, IIT Bombay

Sleep and wakeup in xv6

Sleep and wakeup in xv6 (1)

• xv6 does not have userspace threads, only single threaded processes
• But multiple processes may be in kernel mode on different CPU

• Uses locks to protect access to shared kernel data structures
• OS also needs a mechanism to let processes sleep (e.g., when process

makes blocking disk read syscall) and wakeup when some events
occur (e.g., disk has raised interrupt and data is ready)

• Process P1 in kernel mode calls sleep to give up CPU, gets blocked
until event

• Another process P2 (in kernel mode) wakes up P1 when the event
occurs

Sleep and wakeup in xv6 (2)

• A process P1 that wishes to block and give up CPU calls “sleep”
• Example: process reads a block from disk, must block until disk read

completes
• Read syscall sleep  sched() to give up CPU

• Another process P2 calls “wakeup” when event to unblock P1 occurs
• P2 calls wakeup marks P1 as runnable, no context switch immediately
• Example: disk interrupt occurred when P2 is running, P2 runs interrupt

handler, which will call wakeup

• P1 will be scheduled at a later time, will resume at sched(), return
• Spinlock protects atomicity of sleep: P1 calls sleep with some spinlock

L held, P2 calls wakeup with same spinlock L held
3

Sleep and wakeup in xv6 (3)

• How does P2 know which process to wake up?
• When P1 sleeps, it sets a channel (void * chan) in its struct proc

• Arguments to sleep: channel, spinlock to protect atomicity of sleep

• P2 calls wakeup on same channel
• Arguments to wakeup: channel (lock must be held)

• Channel = any value known to both P1 and P2
• Example: channel value for disk read can be address of disk block

Example: wait and exit
• If wait called in parent while children are running, parent calls sleep and

gives up CPU (channel is parent struct proc pts, lock is ptable.lock)

• In exit, child acquires ptable.lock, wakes up parent using its channel

• Why is terminated process memory cleaned up by parent?
• When a process calls exit, kernel stack, page table etc are in use, all this memory

cannot be cleared until terminated process has been taken off the CPU

5

Example: pipes in xv6 (1)

• xv6 provides anonymous pipes for IPC
between parent and child processes

• Example: Parent P and child C share
anonymous pipe

• Child C writes into pipe, parent P reads
from pipe

• One of P or C closes read end, other
closes write end

6

//userspace code

int fd[2]
pipe(fd) //syscall to create pipe

int ret = fork()

if(ret == 0) {//child
close(fd[0]) //close read end
write(fd[1], message, ..)

}
else {//parent

close(fd[1]) //close write end
read(fd[0], message, ..)

}

//userspace code

int fd[2]
pipe(fd) //syscall to create pipe

int ret = fork()

if(ret == 0) {//child
close(fd[0]) //close read end
write(fd[1], message, ..)

}
else {//parent

close(fd[1]) //close write end
read(fd[0], message, ..)

}

Child
Parent

Example: pipes in xv6 (2)
• Internal implementation inside kernel

• Common shared buffer, protected by a spinlock
• Write system call stores data in shared buffer
• Read system call returns data from shared buffer
• Variables nread and nwrite indicate number of bytes read/written in buffer

Example: pipes in xv6 (3)
• Implementation of pipe read

and write system calls uses
sleep/wakeup

• Pipe reader sleeps if pipe is
empty, pipe writer wakes it up

• Pipe writer sleeps if pipe is full,
pipe reader wakes it up

• Channel for sleep/wakeup =
address of pipe structure
variables

8

pipe is full

writer’s channel for sleep is
address of nwrite variable

Example: pipes in xv6 (4)

9

pipe is empty

pipe lock protects atomicity of sleep

reader’s channel is address of nread variable

Sleep function
• Sleep and wakeup called by

processes with same lock held
(to protect atomicity of sleep)

• Acquire ptable lock (if not
already taken), then release
other spinlock

• Reacquire original lock on return

Wakeup function
• Wakeup acquires ptable.lock to

change process to runnable
• If lock protecting atomicity of

sleep is ptable.lock itself, then
directly call wakeup1

• Wakes up all processes sleeping on
a channel in ptable (more like
signal broadcast of condition
variables)

11

