Sleep and wakeup in xv6

Mythili Vutukuru
CSE, IIT Bombay

Sleep and wakeup in xv6 (1)

* xv6 does not have userspace threads, only single threaded processes

* But multiple processes may be in kernel mode on different CPU
» Uses locks to protect access to shared kernel data structures

* OS also needs a mechanism to let processes sleep (e.g., when process

makes blocking disk read syscall) and wakeup when some events
occur (e.g., disk has raised interrupt and data is ready)

* Process P1 in kernel mode calls sleep to give up CPU, gets blocked
until event

* Another process P2 (in kernel mode) wakes up P1 when the event
occurs

Sleep and wakeup in xv6 (2)

* A process P1 that wishes to block and give up CPU calls “sleep”

* Example: process reads a block from disk, must block until disk read
completes

* Read syscall = sleep = sched() to give up CPU

* Another process P2 calls “wakeup” when event to unblock P1 occurs
* P2 calls wakeup = marks P1 as runnable, no context switch immediately

* Example: disk interrupt occurred when P2 is running, P2 runs interrupt
handler, which will call wakeup

* P1 will be scheduled at a later time, will resume at sched(), return

* Spinlock protects atomicity of sleep: P1 calls sleep with some spinlock
L held, P2 calls wakeup with same spinlock L held

Sleep and wakeup in xv6 (3)

* How does P2 know which process to wake up?

 When P1 sleeps, it sets a channel (void * chan) in its struct proc
* Arguments to sleep: channel, spinlock to protect atomicity of sleep

* P2 calls wakeup on same channel
* Arguments to wakeup: channel (lock must be held)

e Channel = any value known to both P1 and P2
e Example: channel value for disk read can be address of disk block

Example: wait and exit

* If wait called in parent while children are running, parent calls sleep and
gives up CPU (channel is parent struct proc pts, lock is ptable.lock)

2706 // Wait for children to exit. (See wakeupl call in proc_exit.)
2707 sleep(curproc, &ptable.lock);

* In exit, child acquires ptable.lock, wakes up parent using its channel

2650 // Parent might be sleeping in wait().
2651 wakeupl(curproc->parent);

* Why is terminated process memory cleaned up by parent?

* When a process calls exit, kernel stack, page table etc are in use, all this memory
cannot be cleared until terminated process has been taken off the CPU

Example: pipes in xv6 (1)

* xv6 provides anonymous pipes for IPC
between parent and child processes

* Example: Parent P and child C share
anonymous pipe

* Child C writes into pipe, parent P reads
from pipe

* One of P or C closes read end, other
closes write end

Child [<\
&ﬁ Paren:c
~ —

//userspace code

int fd[2]
pipe(fd) //syscall to create pipe

int ret = fork()

if(ret == 0) {//child

close(fd[0]) //close read end
write(fd[1], message, ..)

}
else {//parent

close(fd[1]) //close write end
read(fd[0], message, ..)
}

Example: pipes in xv6 (2)

* Internal implementation inside kernel
« Common shared buffer, protected by a spinlock
* Write system call stores data in shared buffer
* Read system call returns data from shared buffer
* Variables nread and nwrite indicate number of bytes read/written in buffer

6762 struct pipe {

6763 struct spinlock lock;

6764 char data[PIPESIZE];

6765 uint nread; // number of bytes read
6766 uint nwrite; // number of bytes written
6767 1int readopen; // read fd is still open
6768 1int writeopen; // write fd is still open
6769 };

Example: pipes in xv6 (3)
gggg ;?;ewrite(struct pipe *p, char *addr, int n)

* Implementation of pipe read
and write system calls uses
sleep/wakeup

* Pipe reader sleeps if pipe is
empty, pipe writer wakes it up

* Pipe writer sleeps if pipe is full,
pipe reader wakes it up

e Channel for sleep/wakeup =

address of pipe structure
variables

6831 {
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849 }

it 1

acquire(&p—>1lock);
for(i = 0; 1 < n; i++){
while(p—>nwrite == p->nread + PIPESIZE){
if(p->readopen == 0 || myproc()->killed){
release(&p—>1lock);
return -1;

pipe is full

} writer’s channel for sleep is
wakeup(&p—>nr§ad): address of nwrite variable
sleep(&p—>nwrite, &p—>lock);

}
p—>data[p->nwrite++ % PIPESIZE] = addr[i];
}
wakeup (&p->nread) ;
release(&p—>1lock);
return n;

Example: pipes in xv6 (4)

6850 int

6851 piperead(struct pipe *p, char *addr, int n)

6852 {

6853 int 1i;

6854

6855 acquire(&p->lock); pipe is empty
6856 while(p—>nread == p—>nwrite &% p->writeopen){

6857 if(myproc()—->kilTled){

6858 release(&p—>Tock);

6859 return -1;

6860 } reader’s channel is address of nread variable
6861 sleep(&p->nread, &p->lock); o

6862 1 pipe lock protects atomicity of sleep
6863 for(i = 0; 1 < n; 1++){

6864 if(p->nread == p->nwrite)

6865 break;

6866 addr[i1] = p—->data[p->nread++ % PIPESIZE];

6867 }

6868 wakeup(&p—>nwrite);
6869 release(&p—>Tock);
6870 return 1i;

6871 }

2873 void

2874 sleep(void *chan, struct spinlock *1k) I
254 § Sleep function
2876 struct proc *p = myproc();
2877
2878 if(p == 0) * Sleep and wtakeup called by
gggg panic("sleep"); processes with same lock held
2881 if(1k == 0) (to protect atomicity of sleep)
2882 panic("sleep without Tk"); . .
2883 * Acquire ptable lock (if not
2884 // Must acquire ptable.lock in order to
2885 // change p->state and then call sched. already taken)' then release
2886 // Once we hold ptable.lock, we can be other Spinlock
2887 // guaranteed that we won’t miss any wakeup
2888 // (wakeup runs with ptable.lock Tocked), ° 1 1G1
il B sl il s Ly Reacquire original lock on return
2890 if(1k != &ptable.lock){
2891 acquire(&table.lock); 2900 // Tidy up.
2892 release(1k); 2901 p—>chan = 0;
2893 } 2902 ' o
2894 // Go to sleep. 2903 (/ Reacquire original Tlock.
2895 p->chan = chan: 2904 if(1k !'= &ptable.Tock){
2896 p->state = SLEEPING: 2905 re1e§se(&ptab1e.1ock);
2906 acquire(lk);
2897 2007}
2898 sched(); 2908 }

2899

Wakeup function
. 2950 // Wake up all processes sleeping on chan.
* Wakeup acquires ptable.lock to 2951 // The ptable Tock must be held.

2952 static void
change process to runnable 5 wal samide i s

. . 2954 {
* If lock protecting atomicity of S
1 1 2956
Sl.eep 15 ptable'IOCk Itself’ then 2957 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
directly call wakeupl 2958 if(p->state == SLEEPING & p->chan == chan)
. 2959 p->state = RUNNABLE;

* Wakes up all processes sleeping on gggg }

d Channel in ptable (more I|ke 2962 // Wake up all processes sleeping on chan.

: H 2963 void
S|gpal broadcast of condition 08 ok carEuoidl s
variables) 2965 {

2966 acquire(&ptable.lock);
2967 wakeupl(chan);

2968 release(&ptable.lock);
2969 }

11

