Scheduling and Context switching in xv6

Mythili Vutukuru
CSE, IIT Bombay

2757 void
2758 scheduler(void)

Context switching in xv6 22¢, e

2761 struct cpu *c = mycpu();
2762 c—>proc = 0;

2763
) Every CPU has a SChEdU|er thread ;;gg fo;ﬁ;éiibh interrupts on this processor
(special OS process that runs scheduler s o
COd E) g;gg géqtti)gz(zgi;bl]ngc‘);gii;able looking for process to run.

2770 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

e Scheduler goes over list of processes 2771 ifG>state 1= RuMNABLE)

2772 continue;
and switches to one of the runnable e . . .
2774 // Switch to chosen process. It is the process’s job
Ones 2775 // to release ptable.lock and then reacquire it
2776 // before jumping back to us.
. . “ ” 2777 c->proc = p;
* The special function “swtch” performs 27 switchune;
. 2779 p->state = RUNNING;
2780
the aCtuaI ConteXt SWItCh from 2781 swtch(&(c->scheduler), p->context);
scheduler thread to user process i ERnERRD
2784 // Process is done running for now.
2785 // It should have changed its p->state before coming back.
2786 c—>proc = 0;
2787 }
2788 release(&ptable.lock);
2789
2790 1}

2791 }

Scheduler and sched

* Scheduler switches to user process in
“scheduler” function

» User process switches to scheduler
thread in the “sched” function

* The function “swtch” called to context
switch from user process to special
scheduler process

* Scheduler process picks next process
and the cycle repeats

2807 void
2808 sched(void)

2809 {
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821

int intena;
struct proc *p = myproc();

if('holding(&ptable.lock))
panic("sched ptable.lock™);
1f(mycpu()->ncli != 1)
panic("sched Tocks");
if(p->state == RUNNING)
panic("sched running");
if(readeflags Q&FL_IF)
panic("sched interruptible");

2822

intena = mycpu()->intena;
swtch(&p->context, mycpu()->scheduler);

2823
2824 }

mycpu()->intena = intena;

When does user process call sched?

* Yield: Timer interrupt
occurs, process has run
enough, gives up CPU

* Exit: Process has called
exit, sets itself as zombie,
gives up CPU

* Sleep: Process has
performed a blocking
action, sets itself to sleep,
gives up CPU

2662
2663
2664
2665
2666 }

2826 // Give up the CPU for one scheduling round.
2827 void

2828 yield(void)

2829 {

2830 acquire(&ptable.lock);

2831 myproc()->state = RUNNABLE;

2832 sched();

2833 release(&ptable.lock);

2834 }

// Jump into the scheduler, never to return.
curproc->state = ZOMBIE;
sched();

panic("zombie exit");

2894 // Go to sleep.

2895 p->chan = chan;

2896 p->state = SLEEPING;
2897

2898 sched();

2899

2326 struct context {
2327 uint edi;
2328 uint esi;

struct context 2329 uint ebx;

2330 uint ebp;
2331 uint eip;
2332 };

* In both scheduler and sched functions, the function “swtch”

switches between two “contexts”

» Context structure: set of registers to be saved / restored when
switching from one process to another

* EIP where the process stopped execution, so that it can resume from same
point when it is scheduled again in future

* And a few more registers (why not all? more later)

* Context is pushed onto kernel stack, and pointer to the structure is
stored in struct proc (p->context)

2342
2343
2344
2345

Context structure vs. trap frame in xv6

e Struct proc stores pointers to two structures on kernel stack

* Trapframe is saved when CPU switches to kernel mode (e.g., PCin
trapframe is PC value when syscall was made in user code)

* Context structure is saved when process switches to another
process (e.g., PC value when swtch function is invoked)

* Both reside on kernel stack, struct proc has pointers to both

* Example: Process has timer interrupt, saves trapframe on kstack,
then context switch, saves context structure on kstack

int pid;

struct proc *parent;
struct trapframe *tf;
struct context *context;

// Process ID

// Parent process

// Trap frame for current syscall
// swtch() here to run process

Summary of context switching in xv6

* What happens during context switch from process P1 to P2?

* P1 goes to kernel mode and gives up CPU (timer interrupt or exit or sleep)
P1 switches to CPU scheduler thread
Kernel stack of P1 has context structure and trap frame below it
Scheduler thread finds runnable process P2 and switches to it

P2 had given up CPU after saving context on its kernel stack in the past, so
its kernel stack also has context structure and trap frame ESP

. —
P2 restores context structure, resumes in kernel mode

P2 returns from trap to user mode context structure
User mode of P1 User mode of P2
trapframe

|

Kernel mode of P1 e Scheduler thread smmmmd Kernel mode of P2

7

swtch function

* Save registers in
context structure on
kernel stack of old
process

e Switches ESP to context
structure of new
process

* Pops registers from
new context structure

* CPU now has context
of new process

3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078

Context switch

#

wvoid swtch(struct context **old, struct context *new);
#

Save the current registers on the stack, creating

a struct context, and save its address in *old.

Switch stacks to new and pop previously-saved registers.
.globl swtch

swtch:

mov] 4(%esp), %eax
mov]l 8(%esp), %edx

Save old callee-saved registers
push1 %ebp
push1 %ebx
push1 %esi
pushl %edi

Switch stacks
mov]l %esp, (%eax)
movl %edx, %esp

Load new callee-saved registers
popl %edi

popl %esi

popl %ebx

popl %ebp

ret

Arguments to swtch function

* Both CPU thread and process maintain a context structure
pointer variable (struct context *)

» swtch takes two arguments: address of old context pointer to
switch from, new context pointer to switch to

* When invoked from scheduler: address of scheduler’s context
pointer, process context pointer

2781 swtch(&(c->scheduler), p->context);

* When invoked from sched: address of process context pointer,
scheduler context pointer

2822 swtch(&p->context, mycpu()->scheduler);

* Understand why the first argument is address and second is not

Why save and restore only some registers?

* What is on the kernel stack when a process/thread has just invoked
the swtch? Caller save registers and return address (EIP)

* What does swtch do?
* Push remaining (callee save) registers on old kernel stack
e Save pointer to this context in old process PCB
Switch ESP from old kernel stack to new kernel stack
ESP now points to saved context of new process
Pop callee-save registers from new stack
Return from function call (pops return address, caller save registers)

swtch function code explanation

 When swtch function call is made, old kernel stack has return address (eip)
and arguments to swtch (address of old context pointer, new context pointer)

 Store address of old context pointer into eax

 Store value of new context pointer into edx

* Push callee save registers on kernel stack of old process

* Top of stack esp now points to complete context structure of old process
» Update old context pointer (eax) to point to updated context

» Switch stacks: Copy new context pointer from edx to esp

* Pop registers from new context structure

» Return from swtch in new process

What about new processes?

* The context switching code in xv6 restores context from kernel stack of
a process and resumes execution where process stopped earlier

e But what if a process has never run before? Where will newly forked
process resume execution when it is switched in by scheduler?

» Kernel stack of new processes (artificially created context structure
and trap frame) setup in such a way that

* EIP of function where it has to start is saved in context structure, so that it
appears that process was switched out at the location where we want it to
resume in kernel mode

* Trap frame copied from parent, so it resumes in user mode just after fork
* Process resumes execution in kernel mode, returns from trap to user space

xv6: fork system call implementation

2579 int

2580 fork(void)

2581 {

2582 int i, pid;

2583 struct proc *np;

2584 struct proc *curproc = myproc();
2585

2586 // Allocate process.

2587 if((np = allocproc()) == 0){
2588 Fotur——1

2589 }

2590

2591 // Copy process state from proc.
2592 if((np—>pgdir = copyuvm(curproc—>pgdir, curproc->sz)) == 0){
2593 kfree(np—>kstack);

2594 np—>kstack = 0;

2595 np->state = UNUSED;

2596 return -1;

2597 }

2598 np->sz = curproc->sz;

2599 np->parent = curproc;

2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621 }

*np—>tf = *curproc—>tf;

// Clear %eax so that fork returns 0 in the child.
np—>tf->eax = 0;

for(i = 0; i < NOFILE; i++)

if(curproc—>ofile[i])

np—>ofile[i] = filedup(curproc—>ofile[i]);

np—>cwd = idup(curproc—>cwd);
safestrcpy(np->name, curproc->name, sizeof(curproc->name));
pid = np->pid;
acquire(&ptable.lock);
np->state = RUNNABLE;
release(&ptable.lock);

return pid;

13

allocproc (1)

* Find unused entry in ptable,
mark is as embryo

* Marked as runnable after
process creation completes

* New PID allocated

* New memory allocated for
kernel stack, stack pointer
points to bottom of stack

2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499

// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and initialize
// state required to run in the kernel.
// Otherwise return 0.
static struct proc*
allocproc(void)
|
struct proc *p;
char *sp;

acquire(&ptable.lock);

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p—>state == UNUSED)
goto found;

release(&ptable.lock);
return 0;

found:
p->state = EMBRYO;
p—>pid = nextpid++;

release(&ptable.lock);

// Allocate kernel stack.
if((p—>kstack = kalloc()) == 0){
p->state = UNUSED;
return 0;
}
sp = p—>kstack + KSTACKSIZE;

allocproc (2)

* Leave space for trapframe (copied from
parent)

* Push return address of “trapret”

* Push context structure, with eip pointing to
function “forkret”

* Why? When new process scheduled, begins
execution at forkret, then returns to trapret,
then returns from trap to userspace

* Hand-crafted kernel stack to make it look
like process had a trap and context switch
» Scheduler can switch this process in like others

2500

250
250
250

1
2
3

2504

250
250
250
250
250

5
6
7
8
9

2510

251
251
251

1

// Leave room for trap frame.
sp —= sizeof *p—>tf;
p—>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp —— 4-

(uint)sp = (uint)trapret;

sp —= sizeof *p->context;
p->context = (struct context¥*)sp;
memset(p—>context, 0, sizeof *p->context);

2

p->context—>eip = (uint)forkret;

3

2514

2515 }

return p;

Forking new processes: summary

* Fork creates new process (PCB, PID, kernel stack) via allocproc
* Parent memory and file descriptors copied

* Trap frame of child copied from that of parent
e Result: child returns from trap to exact line of code as parent

* Only return value of system call in eax is changed, so parent and child
have different return values from fork

 State of new child set to runnable, so scheduler thread wiill
context switch to child process sometime in future

* Parent returns normally from trap/system call

 Child runs later when scheduled (forkret, trapret) and returns
to user space like parent process

Init process creation

* Init process: first process created by xv6 after boot up

* This init process forks shell process, which in turn forks other processes to
run user commands
* The init process is the ancestor of all processes in Unix-like systems

» After init, every other process is created by the fork system call,
where a parent forks/spawns a child process

* The function “allocproc” called during both init process creation
and in fork system call

 Allocates new process structure, PID etc

e Sets up the kernel stack of process so that it is ready to be context
switched in by scheduler

2518 // Set up first user process.
2519 void

Init process creation e

2522 struct proc *p;
2523 extern char _binary_initcode_start[], _binary_initcode_size[];
2524

* Alloc proc creates new process 33 77 eerrecO;

2527 initproc = p;

* When scheduled, it runs 2528 if((p->padir = setupkvm()) == 0)
. 2529 panic("userinit: out of memory?");
funCt|On forkret’ then tra pret 2530 dinituvm(p->pgdir, _binary_initcode_start, (int)_binary_initcode_size);

2531 p->sz = PGSIZE;

2532 memset(p—>tf, 0, sizeof(*p—>tf));
* Trapframe of process set to 2572 potrocs - (SECUGRE << 3 | DPLLUSER
. p—>tT—>ds = | << = i
make process return to first S e
instruction of init code S i e
o o . 2539 p->tf-seip = 0; // beginning of initcode.S
(initcode.S) in userspace 2540

2541 safestrcpy(p—>name, "initcode", sizeof(p->name));
2542 p->cwd = namei("/");

* The code “initcode.S” simply 2543

2544 // this assignment to p->state lets other cores

performs ”exec” System Ca” to 2545 // run this process. the acquire forces the above

2546 // writes to be visible, and the lock is also needed

Tat 2547 // because the assignment might not be atomic.
run the Inlt user program 2548 acquire(&ptable.lock);
2549
2550 p—>state = RUNNABLE;
2551

2552 release(&ptable.lock);
2553 } 18

Init user program

* Init program opens STDIN,
STDOUT, STDERR files

* Inherited by all subsequent
processes as child inherits
parent’s files

e Forks a child, execs shell
executable in the child, waits
for child to die

* Reaps dead children (its own
or other orphan descendants)

8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536

// init: The initial user-level program

#include "types.h"
#include "stat.h"
#include "user.h"
#include "fcntl.h"

char *argv[] = { "sh", 0 };

int
main(void)
{

int pid, wpid;

if(open("console"”, O_RDWR) < 0){
mknod("console", 1, 1);
open("console", O_RDWR);

}

dup(0); // stdout

dup(0); // stderr

for(;;){
printf(1l, "init: starting sh\n");
pid = fork();
if(pid < 0){
printf(1l, "init: fork failed\n");
exit();
¥
if(pid == 0){
exec("sh", argv);
printf(l, "init: exec sh failed\n");
exit();
}
while((wpid=wait()) >= 0 && wpid != pid)
printf(1l, "zombie!\n");
}
}

