
Mythili Vutukuru
CSE, IIT Bombay

Scheduling and Context switching in xv6



Context switching in xv6 
• Every CPU has a scheduler thread 

(special OS process that runs scheduler 
code)

• Scheduler goes over list of processes 
and switches to one of the runnable 
ones

• The special function “swtch” performs 
the actual context switch from 
scheduler thread to user process

2



Scheduler and sched
• Scheduler switches to user process in 

“scheduler” function
• User process switches to scheduler 

thread in the “sched” function
• The function “swtch” called to context 

switch from user process to special 
scheduler process

• Scheduler process picks next process 
and the cycle repeats

3



When does user process call sched?
• Yield: Timer interrupt 

occurs, process has run 
enough, gives up CPU

• Exit: Process has called 
exit, sets itself as zombie, 
gives up CPU

• Sleep: Process has 
performed a blocking 
action, sets itself to sleep, 
gives up CPU

4



struct context

• In both scheduler and sched functions, the function “swtch” 
switches between two “contexts”

• Context structure: set of registers to be saved / restored when 
switching from one process to another

• EIP where the process stopped execution, so that it can resume from same 
point when it is scheduled again in future

• And a few more registers (why not all? more later)

• Context is pushed onto kernel stack, and pointer to the structure is 
stored in struct proc (p->context)

5



Context structure vs. trap frame in xv6
• Struct proc stores pointers to two structures on kernel stack

• Trapframe is saved when CPU switches to kernel mode (e.g., PC in 
trapframe is PC value when syscall was made in user code)

• Context structure is saved when process switches to another 
process (e.g., PC value when swtch function is invoked)

• Both reside on kernel stack, struct proc has pointers to both
• Example: Process has timer interrupt, saves trapframe on kstack, 

then context switch, saves context structure on kstack

6



Summary of context switching in xv6
• What happens during context switch from process P1 to P2?

• P1 goes to kernel mode and gives up CPU (timer interrupt or exit or sleep)
• P1 switches to CPU scheduler thread
• Kernel stack of P1 has context structure and trap frame below it
• Scheduler thread finds runnable process P2 and switches to it
• P2 had given up CPU after saving context on its kernel stack in the past, so 

its kernel stack also has context structure and trap frame
• P2 restores context structure, resumes in kernel mode
• P2 returns from trap to user mode

7kstack

trapframe

context structure

ESP

User mode of P1

Kernel mode of P1 Scheduler thread Kernel mode of P2

User mode of P2



swtch function 

8

• Save registers in 
context structure on 
kernel stack of old 
process

• Switches ESP to context 
structure of new 
process

• Pops registers from 
new context structure 

• CPU now has context 
of new process



Arguments to swtch function 
• Both CPU thread and process maintain a context structure 

pointer variable (struct context *)
• swtch takes two arguments: address of old context pointer to 

switch from, new context pointer to switch to
• When invoked from scheduler: address of scheduler’s context 

pointer, process context pointer

• When invoked from sched: address of process context pointer, 
scheduler context pointer

• Understand why the first argument is address and second is not
9



Why save and restore only some registers?
• What is on the kernel stack when a process/thread has just invoked 

the swtch? Caller save registers and return address (EIP)
• What does swtch do?

• Push remaining (callee save) registers on old kernel stack
• Save pointer to this context in old process PCB
• Switch ESP from old kernel stack to new kernel stack 
• ESP now points to saved context of new process
• Pop callee-save registers from new stack
• Return from function call (pops return address, caller save registers)

10



swtch function code explanation
• When swtch function call is made, old kernel stack has return address (eip) 

and arguments to swtch (address of old context pointer, new context pointer)
• Store address of old context pointer into eax
• Store value of new context pointer into edx
• Push callee save registers on kernel stack of old process
• Top of stack esp now points to complete context structure of old process
• Update old context pointer (eax) to point to updated context
• Switch stacks: Copy new context pointer from edx to esp
• Pop registers from new context structure
• Return from swtch in new process

11



What about new processes?

• The context switching code in xv6 restores context from kernel stack of 
a process and resumes execution where process stopped earlier

• But what if a process has never run before? Where will newly forked 
process resume execution when it is switched in by scheduler?

• Kernel stack of new processes (artificially created context structure 
and trap frame) setup in such a way that

• EIP of function where it has to start is saved in context structure, so that it 
appears that process was switched out at the location where we want it to 
resume in kernel mode

• Trap frame copied from parent, so it resumes in user mode just after fork
• Process resumes execution in kernel mode, returns from trap to user space



xv6: fork system call implementation

13



allocproc (1)

• Find unused entry in ptable, 
mark is as embryo

• Marked as runnable after 
process creation completes

• New PID allocated
• New memory allocated for 

kernel stack, stack pointer 
points to bottom of stack



allocproc (2)
• Leave space for trapframe (copied from 

parent)
• Push return address of “trapret”
• Push context structure, with eip pointing to 

function “forkret”
• Why? When new process scheduled, begins 

execution at forkret, then returns to trapret, 
then returns from trap to userspace

• Hand-crafted kernel stack to make it look 
like process had a trap and context switch

• Scheduler can switch this process in like others



Forking new processes: summary
• Fork creates new process (PCB, PID, kernel stack) via allocproc
• Parent memory and file descriptors copied 
• Trap frame of child copied from that of parent

• Result: child returns from trap to exact line of code as parent
• Only return value of system call in eax is changed, so parent and child 

have different return values from fork

• State of new child set to runnable, so scheduler thread will 
context switch to child process sometime in future

• Parent returns normally from trap/system call
• Child runs later when scheduled (forkret, trapret) and returns 

to user space like parent process
16



Init process creation
• Init process: first process created by xv6 after boot up

• This init process forks shell process, which in turn forks other processes to 
run user commands

• The init process is the ancestor of all processes in Unix-like systems

• After init, every other process is created by the fork system call, 
where a parent forks/spawns a child process

• The function “allocproc” called during both init process creation 
and in fork system call

• Allocates new process structure, PID etc
• Sets up the kernel stack of process so that it is ready to be context 

switched in by scheduler

17



Init process creation
• Alloc proc creates new process

• When scheduled, it runs 
function forkret, then trapret

• Trapframe of process set to 
make process return to first 
instruction of init code 
(initcode.S) in userspace

• The code “initcode.S” simply 
performs “exec” system call to 
run the init user program

18



Init user program
• Init program opens STDIN, 

STDOUT, STDERR files
• Inherited by all subsequent 

processes as child inherits 
parent’s files

• Forks a child, execs shell 
executable in the child, waits 
for child to die

• Reaps dead children (its own 
or other orphan descendants)

19


