
Mythili Vutukuru
CSE, IIT Bombay

Trap handling in xv6

Trap handling in xv6
• The following events in xv6 cause a user process to “trap” into the kernel

• System calls (requests by user for OS services)
• Interrupts (external device wants attention)
• Program fault (illegal action by program)

• When above events happen, CPU executes the special “int” instruction
• Example seen in usys.S, “int” invoked to handle system calls
• For hardware interrupts, device sends a signal to CPU, and CPU executes int

• Trap instruction has a parameter (int n), indicating type of interrupt
• E.g., syscall has a different value of n from keyboard interrupt
• The value of “n” is used to index into IDT, get address of kernel code to run

• xv6 trap handling code saves register context, handles trap, returns
2

xv6 system calls
• In xv6, system calls available to user

programs are defined in user library
header “user.h”

• Equivalent to C library headers (xv6
doesn’t use standard C library)

• These system call functions invoked
in user programs after including
“user.h”

• The actual invoking of system call is
done in usys.S

3

xv6 system calls
• The user library makes the actual system

call to invoke OS code
• User library invokes trap instruction to

make system call, code seen in usys.S
• Defined using a macro
• Move system call number to eax
• Invoke int n where n is T_SYSCALL

• Other interrupts set different values of n
• The trap (int) instruction causes a jump to

kernel code that handles the system call

4

Trap frame in xv6
• Trap frame is the structure pushed on

kernel stack before trap handling, popped
when returning from trap

• Contains various registers that are saved
on kernel stack before trap handling

• The “int n” instruction pushes a few
registers (old PC, old SP etc.) and jumps to
kernel code to handle trap

• The kernel code that is run next will push
remaining registers on kernel stack, and
then proceed to handle the trap

• Think: why are EIP, ESP pushed by
hardware and not by kernel code?

5

xv6 kernel trap handler
• IDT entries for all interrupts

eventually redirect to the kernel
trap handler “alltraps”

• Push trap number (n) on trapframe
and then call alltraps

• Alltraps assembly code pushes
remaining registers to complete
trapframe on kernel stack

• Invokes C trap handling function
named “trap”

• Push pointer to trapframe (current
top of stack, esp) as argument to
the C function

6

C trap handler function in xv6

• C trap handler performs different actions based on kind of trap
• Different types of traps identified using value of “n” in “int n”
• For system call, “n” equal to a value T_SYSCALL (in usys.S),

indicating this trap is a system call
• Trap handler invokes common system call function
• Looks at system call number stored in eax and calls the corresponding

function (fork, exec, …)
• Return value of syscall stored in eax

7

8

C trap handler invoking syscalls

• If interrupt from a device,
corresponding driver code
called

• Timer is special hardware
interrupt, generated
periodically to trap to
kernel

9

C trap handler (contd)

• On timer interrupt, a
process “yields” CPU to
scheduler

• Ensures a process does
not run for too long

10

Return from trap

• Assembly code “trapret”
• Pop all state from kernel stack
• Return-from-trap instruction

“iret” does the opposite of int
• Pop values pushed by “int”
• Change back privilege level

• Execution of pre-trap code
can resume

11

xv6 trap handling: the complete story

• System calls, program faults, or hardware interrupts cause CPU to run
“int n” instruction and “trap” to OS

• The trap instruction (int n) causes CPU to switch ESP to kernel stack,
EIP to kernel trap handling code “alltraps”

• Pre-trap CPU state is saved on kernel stack in the trap frame by int
instruction + alltraps code

• Alltraps assembly code calls C trap handling function
• C trap handler handles trap suitably and returns to trapret code
• Trapret pops register context and runs “iret” instruction to return from

trap to user mode of process
12

