Lectures on Operating Systems (Mythili Vutukuru, II'T Bombay)
Lab: Inter-process communication

In this lab, you will understand how to write programs using various Inter-Process Communication
(IPC) mechanisms.

Before you begin

Familiarize yourself with various IPC mechanisms, including shared memory, named pipes, and Unix
domain sockets.

Warm-up exercises

Do the following exercises before you begin the lab.

1. You are given two programs that use POSIX shared memory primitives to communicate with each
other. The producer program in the file shm-posix—-producer—orig.c creates a shared
memory segment, attaches it to its memory using the mmap system call, and writes some text into
that segment. You can see the shared memory file under /dev/shm after the producer writes to it.
The consumer program in shm-posix-consumer—-orig.c opens the same shared memory
segment, reads the text written by the producer, and displays it to the screen. Read, understand
and execute both programs to understand how POSIX shared memory works. These examples are
from the famous OS textbook by Gagne, Galvin, Silberschatz. A sample run of this code is shown
below. Note the library used during compilation.

$ gcc -o prod shm-posix-producer-orig.c -1lrt
$ gcec -o cons shm-posix—-consumer-orig.c -1lrt
$ ./prod

$ cat /dev/shm/OS

Studying Operating Systems Is Fun!

$ ./cons

Studying Operating Systems Is Fun!

2. You are given two programs that communicate with each other using Unix domain sockets. The
server program socket-server-orig.c opens a Unix domain socket and waits for mes-
sages. The client program socket—-client-orig. c reads a message from the user, and sends
it to the server over the socket. The server then displays it. The programs can be compiled as
follows.



$ gcc -o client socket-client-orig.c
$ gcc -o server socket-server-orig.c

You must first start the server:

$ ./server
Server ready

Then, start the client, type a message, and check that it is displayed at the server.

$ ./client
Please enter the message: hello
Sending data...

3. Write a simple program where a parent opens a pipe, and then forks a child process. The parent
leaves the write-end of the pipe open and the child leaves the read-end open. The parent then
writes a simple “hello” string into the pipe, and the child process reads this string and prints it.

Part A: Sharing strings using shared memory

In this part of the lab, you will write two programs, a producer shm-posix-producer.c and con-
sumer shm-posix—-consumer.c. The producer and consumer share a 4KB shared memory segment.
The producer first fills the shared memory segment with 512 copies of the 8-byte string “freeeee” (7 char-
acters plus null termination character) indicating that the shared memory is empty. Then, the producer
repeatedly produces 8-byte strings, e.g., “OSisFUN”, and writes them to the shared memory segment.
The consumer must read these strings from the shared memory segment, display them to the screen,
and “erase” the string from the shared memory segment by replacing them with the free string. The
consumer should also sleep for some time (say, 1 second) after consuming each string, in order to digest
what it has consumed! The producer and consumer should exchange 1000 strings in this manner. Since
there are only 512 slots in the shared memory segment, the producer will have to reuse previously used
memory locations that have been consumed and freed up by the consumer as well.

You can use the starter code shm-posix—-producer—-orig.c/shm-posix—-consumer—-orig.c
given to you to get started. But note that in the original programs, the shared memory segment is opened
only for reading at the consumer, while this part of the lab requires the consumer to write to the shared
memory as well when freeing it up. So you will have to change permission flags to the various system
calls suitably.

How does the consumer know when and where the producer has written a string to the shared mem-
ory? The consumer can constantly keep reading the shared memory segment for a string that is different
from the free string pattern, but this is inefficient. Instead, you must open another channel of commu-
nication between the producer and consumer, using named pipes or message queues or any other IPC
mechanism. Whenever the producer writes a string to the shared memory segment, it sends a message to
the consumer specifying the location (you can use byte offset or any other way to encode the location)
of the string it has written. The consumer repeatedly reads messages from the producer on this chan-
nel, finds out the location of the string it must consume, and then consumes it. You must be careful in
ensuring that the consumer reads the exact same number of bytes written by the producer on this channel.



How does the producer know when a string has been consumed, and the coresponding location freed-
up, by the consumer? Once again, you can make the producer scan the shared memory segment to find
empty slots to produce in, or the consumer can send a message to the producer via some channel to
inform it about free slots. This design choice is left up to you, and you can use the inefficient method of
scanning for free slots if you desire.

Once you write both programs, test them for a smaller number of iterations (instead of 1000) to
check that the shared memory is being used correctly. You may also print out the contents of the shared
memory segment for debugging purposes. You must also test your code for varying amounts of sleep
time at the consumer. When the sleep time is small or 0, you will see that the producer and consumer
finish quickly. However, for longer sleep times, and for more than 512 iterations, you will notice that the
producer slows down while waiting for space to be freed up by the consumer. Play around with different
sleep times to convince yourself that your code is working correctly.

Part B: File transfer using Unix domain sockets

In this part of the lab, you will write two programs, a client program socket-client.c and a server
program socket-server.c which communicate with each other over Unix domain sockets to trans-
fer a file. The client takes a filename as argument, opens and reads the file in chunks of some size (say,
256 bytes) from disk using open/read system calls, and sends this file data over the socket to the server.
The server receives data from the client and displays it on screen. When you run the server in one win-
dow, and the client in another, you should see that the content of the file whose name you have given to
the client is displayed in the server terminal. Ideally, the programs should also terminate when the file
transfer is complete. though this needs a bit of work to achieve, so doing this is optional.

Part C: Shell with pipes

Extend the simple shell you have built in the “Shell” lab to add support for pipes. That is, your shell must
be able to run commands like cat foo.txt | grep hello correctly, where the output from the
first command is piped as input to the second command. You can start with support for two commands
in a pipe, and optionally extend it to support a series of multiple commands connected by pipes. You
may make the same assumptions you made in the shell lab, i.e., all the commands are simple Linux
commands, and the input can be tokenized using space as the delimiter.

Your shell must fork two child processes for the two commands that will be connected via a pipe.
You will need to use the pipe system call in the shell to create the pipe. You will also need to use the
dup?2 system call to duplicate the standard input/output file descriptors of the child processes to point
to the read/write ends of the pipe. Note that for correct execution of the pipe, the shell and the child
processes must close all file descriptors they are not using.

Submission instructions

¢ You must submit the files shm-posix-producer.c and shm-posix—-consumer.c for
part A, and the files socket-client.c and socket-server. c for part B.

* Place these files and any other files you wish to submit in your submission directory, with the
directory name being your roll number (say, 12345678).



* Tar and gzip the directory using the command tar -zcvf 12345678.tar.gz 12345678
to produce a single compressed file of your submission directory. Submit this tar gzipped file on
Moodle.



