
Lectures on Operating Systems (Mythili Vutukuru, IIT Bombay)

Lab: Dynamic memory management

In this lab, you will understand the principles of memory management by building a custom memory
manager to allocate memory dynamically in a program. Specifically, you will implement functions to
allocate and free memory, that act as replacements for C library functions like malloc and free.

Before you begin

Understand how the mmap and munmap system calls work. In this lab, you will use mmap to ob-
tain pages of memory from the OS, and allocate smaller chunks from these pages dynamically when
requested. Familiarize yourself with the various arguments to the mmap system call.

Warm-up exercises

1. Write a simple C/C++ program that runs for a long duration, say, by pausing for user input or
by sleeping. While the process is active, use the ps or any other similar command with suitable
options, to measure the memory usage of the process. Specifically, measure the virtual memory
size (VSZ) of the process, and the resident set size (RSS) of the process (which includes only the
physical RAM pages allocated to the process). You should also be able to see the various pieces
of the memory image of the process in the Linux proc file system, by accessing a suitable file in
the proc filesystem.

2. Now, add code to your simple program to memory map an empty page from the OS. For this
program (and this lab, in general), it makes sense to ask the OS for an anonymous page (since
it is not backed by any file on disk) and in private mode (since you are not sharing this page
with other processes). Do not do anything else with the memory mapped page. Now, pause your
program again and measure the virtual and physical memory consumed by your process. What
has changed, and how do you explain it?

3. Finally, write some data into your memory mapped page and measure the virtual and physical
memory usage again. Explain what you find.
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Part A: Building a simple memory manager

In this part of the lab, you will write code for a memory manager, to allocate and deallocate memory
dynamically. Your memory manager must manage 4KB of memory, by requesting a 4KB page via mmap
from the OS. You must support allocations and deallocations in sizes that are multiples of 8 bytes. The
header file alloc.h defines the functions you must implement. You must fill in your code in alloc.c
or alloc.cpp. The functions you must implement are described below.

• The function init alloc() must initialize the memory manager, including allocating a 4KB
page from the OS via mmap, and initializing any other data structures required. This function will
be invoked by the user before requesting any memory from your memory manager. This function
must return 0 on success and a non-zero error code otherwise.

• The function cleanup() must cleanup state of your manager, and return the memory mapped
page back to the OS. This function must return 0 on success and a non-zero error code otherwise.

• The function alloc(int) takes an integer buffer size that must be allocated, and returns a char
* pointer to the buffer on a success. This function returns a NULL on failure (e.g., requested size
is not a multiple of 8 bytes, or insufficient free space). When successful, the returned pointer
should point to a valid memory address within the 4KB page of the memory manager.

• The function dealloc(char *) takes a pointer to a previously allocated memory chunk, and
frees up the entire chunk.

It is important to note that you must NOT use C library functions like malloc to implement the
alloc function; instead, you must get a page from the OS via mmap, and implement a functionality
like malloc yourself. The memory manager can be implemented in many ways. So feel free to design
and implement it in any way you see fit, subject to the following constraints.

• Your memory manager must make the entire 4KB available for allocations to the user via the
alloc function. That is, you must not store any headers or metadata information within the
page itself, that may reduce the amount of usable memory. Any metadata required to keep track of
allocation sizes should be within data structures defined in your code, and should not be embedded
within the memory mapped 4KB page itself.

• A memory region once allocated should not be available for future allocations until it is freed up
by the user. That is, do not double-book your memory, as this can destroy the integrity of the data
written into it.

• Once a memory chunk of size N1 bytes has been deallocated, it must be available for memory
allocations of size N2 in the future, where N2 ≤ N1. Further, if N2 < N1, the leftover chunk of
size N1 −N2 must be available for future allocations. That is, your memory manager must have
the ability to split a bigger free chunk into smaller chunks for allocations.

• If two free memory chunks of size N1 and N2 are adjacent to each other, a merged memory chunk
of size N1 + N2 should be available for allocation. That is, you must merge adjacent memory
chunks and make them available for allocating a larger chunk.
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• After a few allocations and deallocations, your 4KB page may contain allocated and free chunks
interspersed with each other. When the next request to allocate a chunk arrives, you may use any
heuristic (e.g., best fit, first fit, worst fit, etc.) to allocate a free chunk, as long as the heuristic
correctly returns a free chunk if one exists.

We have provided a sample test program test alloc.c to test your implementation. This pro-
gram runs several tests which initialize your memory manager, and invoke the alloc and dealloc
functions implemented by you. Note that we will be evaluating your code not just with this test program,
but with other ones as well. Therefore, feel free to write more such test programs to test your code
comprehensively. It is important to note that none of the functionality or data structures required by your
memory manager must be embedded within the test program itself. Your entire memory management
code should only be contained within alloc.c.

You can compile and run the test program using the following commands (use g++ for C++).

$gcc test_alloc.c alloc.c
$./a.out

Part B: Expandable heap

In this question, you will build a custom memory allocator over memory mapped pages, much like you
did in the previous part of the lab. However, now your memory allocator should be “elastic”, i.e., it
should memory map pages from the OS only on demand, as described below. You are given the header
file ealloc.h that defines 4 functions that your elastic memory allocator should support. You must
implement these functions in the file ealloc.c or ealloc.cpp.

• The function init alloc() should initialize your memory manager. You can initialize any
datastructures you may require in this function. However, you must NOT memory map any pages
from the OS yet, because you are supposed to allocate memory only on demand.

• The function cleanup() should clean up any state of your memory manager. It is NOT required
to unmap any pages you memory-mapped from the OS here. We assume in this question that your
elastic memory allocator expands by invoking the mmap system call when allocations are made,
but does not return memory back to the OS via munmap.

• The function alloc(int) should take an integer buffer size that must be allocated, and must
return a char * pointer to the buffer on a success. This function should return NULL on failure.
You can make the following assumptions to simplify the problem. Buffer sizes requested are
multiples of 256 bytes, and never longer than 4KB (page size). The total allocated memory will not
exceed 4 pages, i.e., 16KB. You need not worry about allocating chunks across page boundaries,
i.e., you can assume that every allocated chunk fully resides in one of the 4 pages.

Upon receiving the alloc request, your memory allocator should check if it has a free chunk of
memory to satisfy this request amongst its existing pages. If not, it must call mmap to allocate an
anynomous private page from the OS, and use this to satisfy the allocation request. Memory must
be requested from the OS on demand, and in the granularity of 4KB pages. However, the allocator
should not memory map more pages than required from the OS, and should only request as many
pages as required to satisfy the allocation request at hand. For example, suppose your memory al-
locator has been initialized, and the user of your memory allocator has invoked alloc(1024) to
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allocate 1024 bytes. Your allocator should make its first mmap system call at this point, to memory
map one 4KB page only. The next mmap system call to allocate a second page must happen only
when there is no free space within the first memory mapped page to satisfy a subsequent alloca-
tion request. It is very important to note that successive calls to mmap may not return contiguous
portions of virtual address spaces on all systems. Your code must not rely on this assumption, in
order to be portable across systems. Therefore, please do not attempt to allocate chunks that cross
page boundaries, and ensure that an allocated chunk is always fully within a page.

• The function dealloc(char *) takes a pointer to a previously allocated memory chunk (that
was returned by an earlier call to alloc), and frees up the entire chunk. There is no requirement
for your heap to shrink on deallocations, i.e., you need not ever give back freed up empty pages to
the OS via the munmap system call.

Requirements of merging and splitting free chunks remain the same as in part A. We have provided a
simple test program test ealloc.c to check your implementation. This program performs multiple
allocations and deallocations using your custom memory allocator, and checks the sanity of the allocated
memory. The test script also checks that you are correctly splitting and merging existing free chunks to
satisfy allocation requests. To check that you are only memory mapping pages from the OS on demand,
as specified in the problem statement, the program also prints out the virtual memory size (VSZ) of the
process periodically. The comments printed out by the test program should help you figure out how the
VSZ of your program is expected to grow in a correct implementation.

(Note that we can only check correctness of the values of VSZ and not of the actual physical memory
used by your process, because the physical memory allocation is out of your control and is fully handled
by the OS demand paging policies.)
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