Lectures on Operating Systems (Mythili Vutukuru, II'T Bombay)
Lab: Memory management in Xxv6

The goal of this lab is to understand memory management in xv6.

Before you begin

* Download, install, and run the original xv6 OS code. You can use your regular desktop/laptop
to run xv6; it runs on an x86 emulator called QEMU that emulates x86 hardware on your local
machine. In the xv6 folder, run make, followed by make gemu or make—gemu-nox, to boot
xv6 and open a shell.

* We have modified some xv6 files for this lab, and these patched files are provided as part of this
lab’s code. Before you begin the lab, copy the patched files into the main xv6 code directory.

* For this lab, you will need to understand the following files: syscall.c,syscall.h, sysproc.c,
user.h,usys.S,vm.c,proc.c,trap.c,defs.h, mmu.h.

— The files sysproc.c, syscall.c, syscall.h, user.h, usys.S link user system
calls to system call implementation code in the kernel.

— mmu.h and defs.h are header files with various useful definitions pertaining to memory
management.

— The file vm. c contains most of the logic for memory management in the xv6 kernel, and
proc. c contains process-related system call implementations.

— The file t rap. c contains trap handling code for all traps including page faults.

— Understand the implementation of the sbrk system call that spans all of these files.

* Learn how to write your own user programs in xv6. For example, if you add a new system call,
you may want to write a simple C program that calls the new system call. There are several user
programs as part of the xv6 source code, from which you can learn. We have also provided a
simple test program testcase. c as part of the code for this lab. This test program is compiled
by our modified Makefile and you can run it on the xv6 shell by typing testcase at the
command prompt. If you wish to include any other test programs in xv6, remember that the test
program should be included in the Makefile for it to be compiled and executed from the xv6 shell.
Understand how the sample testcase was included within the Makefile, and use a similar logic to
include other test programs as well. Note that the xv6 OS itself does not have any text editor or
compiler support, so you must write and compile the code in your host machine, and then run the
executable in the xv6 QEMU emulator.



Part A: Displaying memory information
You will first implement the following new system calls in xv6.

* numvp () should return the number of virtual/logical pages in the user part of the address space
of the process, up to the program size stored in st ruct proc. You must count the stack guard
page as well in your calculations.

* numpp () should return the number of physical pages in the user part of the address space of the
process. You must count this number by walking the process page table, and counting the number
of page table entries that have a valid physical address assigned.

Because xv6 does not use demand paging, you can expect the number of virtual and physical pages
to be the same initially. However, the next part of the lab will change this property.

Hint: you can walk the page table of the process by using the walkpgdir function which is present
in vm. c. You can find several examples of how to invoke this function within vm. c itself. To compute
the number of physical pages in a process, you can write a function that walks the page table of a process
in vm. c, and invoke this function from the system call handling code.

Part B: Memory mapping with mmap system call

In this part, you will implement a simple version of the mmap system call in xv6. Your mmap system
call should take one argument: the number of bytes to add to the address space of the process. You may
assume that the number of bytes is a positive number and is a multiple of page size. The system call
should return a value of 0 if any invalid inputs are provided. If a valid number of bytes is provided as
input, the system call should expand the virtual address space of the process by the specified number
of bytes, and return the starting virtual address of the newly added memory region. The new virtual
pages should be added at the end of the current program break, and should increase the program size
correspondingly. However, the system call should NOT allocate any physical memory corresponding
to the new virtual pages, as we will allocate memory on demand. You can use the system calls of the
previous part to print these page counts to verify your implementation. After the mmap system call, and
before any access to the mapped memory pages, you should only see the number of virtual pages of a
process increase, but not the number of physical pages.

Physical memory for a memory-mapped virtual page should be allocated on demand, only when the
page is accessed by the user. When the user accesses a memory-mapped page, a page fault will occur,
and physical memory should only be allocated as part of the page fault handling. Further, if you memory
mapped more than one page, physical memory should only be allocated for those pages that are accessed,
and not for all pages in the memory-mapped region. Once again, use the virtual/physical page counts to
verify that physical pages are allocated only on demand.

We have provied a simple test program to test your implementation. This program invokes mmap
multiple times, and accesses the memory-mapped pages. It prints out virtual and physical page counts
periodically, to let you check whether the page counts are being updated correctly. You can write more
such test cases to thoroughly test your implementation.

Some helpful hints for you to solve this assignment are given below.

* Understand the implementation of the sbrk system call. Your mmap system call will follow a
similar logic. In sbrk, the virtual address space is increased and physical memory is allocated



within the same system call. The implementation of sbrk invokes the growproc function,
which in turn invokes the allocuvm function to allocate physical memory. For your mmap im-
plementation, you must only grow the virtual address space within the system call implementation,
and physical memory must be allocated during the page fault. You may invoke allocuvm (or
write another similar function) in order to allocate physical memory upon a page fault.

* The original version of xv6 does not handle the page fault trap. For this assignment, you must
write extra code to handle the page fault trap in t rap . ¢, which will allocate memory on demand
for the page that has caused the page fault. You can check whether a trap is a page fault by check-
ing if tf->trapno is equal to T_.PGFLT. Look at the arguments to the cprintf statements
in trap.c to figure out how one can find the virtual address that caused the page fault. Use
PGROUNDDOWN (va) to round the faulting virtual address down to the start of a page boundary.
Once you write code to handle the page fault, do break or return in order to avoid the processing
of other traps.

* Remember: it is important to call switchuvm to update the CR3 register and TLB every time
you change the page table of the process. This update to the page table will enable the process to
resume execution when you handle the page fault correctly.

Part C: Copy-on-Write Fork

In this part, you will implement the copy-on-write (CoW) variant of the fork () system call. Please
begin this part with a clean installation of the original xv6 code.

You will begin by adding a new system call to xv6. The system call getNumFreePages () should
return the total number of free pages in the system. This system call will help you see when pages are
consumed, and can help you debug your CoW implementation. You must add code to maintain and track
freepages in kalloc. c, and access this information when this system call is invoked.

Next, you will start the copy-on-write fork implementation. The current implementation of the fork
system call in xv6 makes a complete copy of the parent’s memory image for the child. On the other
hand, a copy-on-write (CoW) fork will let both parent and child use the same memory image initially,
and make a copy only when either of them wants to modify any page of the memory image. We will
implement CoW fork in the following steps.

1. Begin with changes to kalloc.c. To correctly implement CoW fork, you must track reference
counts of memory pages. A reference count of a page should indicate the number of processes
that map the page into their virtual address space. The reference count of a page is set to one when
a freepage is allocated for use by some process. Whenever an additional process points to an
already existing page (e.g., when parent forks a child and both share the same memory page), the
reference count must be incremented. The reference count must be decremented when a process
no longer points to the page from its page table. A page can be freed up and returned to the freelist
only when there are no active references to it, i.e., when its reference count is zero. You must add
a datastructure to keep track of reference counts of pages in kalloc.c. You must also add code
to increment and decrement these reference counts, with suitable locking.

2. Understand the various definitions and macros in mmu . h, e.g., to extract the page number from a
virtual address. Feel free to add more macros here if required.



3. The main change to the fork system call to make it CoW fork will happen in the function
copyuvm in vm.c. When you fork a child, you must not make a copy of the parent’s pages
for the child. Instead, the child should get a new page table, and the page tables of the parent and
the child should both point to the same physical pages. This function is one place where you may
have to invoke code in kalloc.c to increment the reference count of a kernel page, becasue
multiple page tables will map the same physical page.

4. Further, when the parent and child are made to share the pages of the memory image as described
above, these pages must be marked read-only, so that any write access to them traps to the kernel.
Now, given that the parent’s page table has changed (with respect to page permissions), you must
reinstall the page table and flush TLB entries by republishing the page table pointer in the CR3
register. This can be accomplished by invoking the function lcr3(v2p(pgdir)) provided by xvo6.
Note that xv6 already does this TLB flush when switching context and address spaces, but you
may have to do it additionally in your code when you modify any page table entries as part of your
CoW implementation.

5. Once you have changed the fork implementation as described above, both parent and child will
execute over the same read-only memory image. Now, when the parent or child processes attempt
to write to a page marked read-only, a page fault occurs. The trap handling code in xv6 does not
currently handle the 7_PGFLT exception (that is defined already, but not caught). You must write
a trap handler to handle page faults in trap.c. You can simply print an error message initially,
but eventually this trap handling code must call the function that makes a copy of user memory.

6. The bulk of your changes will be in this new function you will write to handle page faults. This
function can be written in vm . ¢ and can be invoked from the page fault handling code in trap. c,
because you cannot easily invoke certain static functions like mappages from trap.c. When
a page fault occurs, the CR2 register holds the faulting virtual address, which you can get using
the xv6 function call rcr2 (). You must now look at this virtual address and decide what must
be done about this page fault. If this address is in an illegal range of virtual addresses that are
not mapped in the page table of the process, you must print an error message and kill the process.
Otherwise, if this trap was generated due to the CoW pages that were marked as read-only, you
must proceed to make copies of the pages as needed.

7. Note that between the parent and the child processes, any process that attempts to write to the
read-only memory image (whether parent or child) will trap to the kernel. At this stage, you
must allocate a new page and copy its contents from the original page pointed to by the virtual
address. However, you must make copies carefully. If IV processes share a page, the first N — 1
processes that trap should receive a separate copy of the page in this fashion. After the N — 1
copies are made, the last process that traps is the only one that points to this page (as indicated
by the reference count on the page). Therefore, this last process can simply remove the read-only
restriction on its page and continue to use the original page. Make sure you modify the reference
counts correctly, e.g., decrement the count when a process no longer points to a page by virtue of
getting its own copy. Also remember to flush the TLB whenever you change page table entries.

8. Finally, think about how you will test the correctness of your CoW fork. Write test programs that
print various statistics like the number of free pages in the system, and see how these statistics
change, to test the correctness of your code. We have not provided any test cases and you can
write your own.



Submission instructions

* For this lab, you may need to modify some subset of the following files: syscall.c,syscall.h,
sysproc.c,user.h,usys.S,vm.c, proc.c, trap.c, defs.h. You may also write new
test cases, and modify the Make file to compile additional test cases.

* Place all the files you modified in a directory, with the directory name being your roll number (say,
12345678).

* Tar and gzip the directory using the command tar -zcvf 12345678.tar.gz 12345678 to produce a
single compressed file of your submission directory. Submit this tar gzipped file on Moodle.



