Lecture Notes for CS347: Operating Systems
Mythili Vutukuru, Department of Computer Science and Engineering, IIT Bombay

8. Memory Management in xv6

8.1 Basics

e xv6 uses 32-bit virtual addresses, resulting in a virtual address space of 4GB. xv6 uses paging
to manage its memory allocations. However, xv6 does not do demand paging, so there is no
concept of virtual memory.

e xv6 uses a page size of 4KB, and a two level page table structure. The CPU register CR3
contains a pointer to the page table of the current running process. The translation from virtual
to physical addresses is performed by the MMU as follows. The first 10 bits of a 32-bit virtual
address are used to index into a page table directory, which points to a page of the inner page
table. The next 10 bits index into the inner page table to locate the page table entry (PTE). The
PTE contains a 20-bit physical frame number and flags. Every page table in xv6 has mappings
for user pages as well as kernel pages. The part of the page table dealing with kernel pages is
the same across all processes.

e In the virtual address space of every process, the kernel code and data begin from KERN-
BASE (2GB in the code), and can go up to a size of PHYSTOP (whose maximum value can
be 2GB). This virtual address space of [KERNBASE, KERNBASE+PHYSTOP] is mapped to
[0,PHYSTOP] in physical memory. The kernel is mapped into the address space of every pro-
cess, and the kernel has a mapping for all usable physical memory as well, restricting xv6 to
using no more than 2GB of physical memory. Sheets 02 and 18 describe the memory layout of
Xv6.



8.2 Initializing the memory subsystem

e The xv6 bootloader loads the kernel code in low physical memory (starting at 1MB, after leav-
ing the first IMB for use by I/O devices), and starts executing the kernel at ent ry (line 1040).
Initially, there are no page tables or MMU, so virtual addresses must be the same as physical
addresses. So the kernel entry code resides in the lower part of the virtual address space, and the
CPU generates memory references in the low virtual address space only. The entry code first
turns on support for large pages (4MB), and sets up the first page table ent rypgdir (lines
1311-1315). The second entry in this page table is easier to follow: it maps [KERNBASE,
KERNBASE+4MB] to[0, 4MB], to enable the first 4MB of kernel code in the high virtual ad-
dress space to run after MMU is turned on. The first entry of this page table table maps virtual
addresses [0, 4MB] to physical addresses [0,4MB], to enable the entry code that resides in the
low virtual address space to run. Once a pointer to this page table is stored in CR3, MMU is
turned on, the entry code creates a stack, and jumps to the main function in the kernel’s C code
(line 1217). The C code is located in high virtual address space, and can run because of the
second entry in entrypgdizr. So why was the first page table entry required? To enable the
few instructions between turning on MMU and jumping to high address space to run correctly.
If the entry page table only mapped high virtual addresses, the code that jumps to high virtual
addresses of main would itself not run (because it is in low virtual address space).

e Remember that once the MMU is turned on, for any memory to be usable, the kernel needs a
virtual address and a page table entry to refer to that memory location. When main starts, it
is still using ent rypgdir which only has page table mappings for the first 4MB of kernel
addresses, so only this 4MB is usable. If the kernel wants to use more than this 4MB, it needs
to map all of that memory as free pages into its address space, for which it needs a larger page
table. So, main first creates some free pages in this 4MB in the function kinit1 (line 3030),
which eventually calls the functions freerange (line 3051) and kfree (line 3065). Both
these functions together populate a list of free pages for the kernel to start using for various
things, including allocating a bigger, nicer page table for itself that addresses the full memory.

e The kernel uses the struct run (line 3014) data structure to address a free page. This
structure simply stores a pointer to the next free page, and the rest of the page is filled with
garbage. That is, the list of free pages are maintained as a linked list, with the pointer to the
next page being stored within the page itself. Pages are added to this list upon initialization, or
on freeing them up. Note that the kernel code that allocates and frees pages always returns the
virtual address of the page in the kernel address space, and not the actual physical address. The
V2P macro is used when one needs the physical address of the page, say to put into the page
table entry.

e After creating a small list of free pages in the 4MB space, the kernel proceeds to build a bigger
page table to map all its address space in the function kvmalloc (line 1857). This function
in turn calls setupkvm (line 1837) to setup the kernel page table, and switches to it. The
address space mappings that are setup by set upkvm can be found in the structure kmap (lines
1823-1833). kmap contains the mappings for all kernel code, data, and any free memory that
the kernel wishes to use, all the way from KERNBASE to KERNBASE+PHYSTOP. Note that

2



the kernel code and data is already residing at the specified physical addresses, but the kernel
cannot access it because all of that physical memory has not been mapped into any logical pages
or page table entries yet.

The function set upkvm works as follows. For each of the virtual to physical address mappings
in kmap, it calls mappages (line 1779). The function mappages walks over the entire virtual
address space in 4KB page-sized chunks, and for each such logical page, it locates the PTE
using the walkpgdir function (line 1754). walkpgdir simply outputs the translation that
the MMU would do. It uses the first 10 bits to index into the page table directory to find the
inner page table. If the inner page table does not exist, it requests the kernel for a free page,
and initializes the inner page table. Note that the kernel has a small pool of free pages setup
by kinit1 in the first 4MB address space—these free pages are used to construct the kernel’s
page table. Once walkpgdir returns the PTE, mappages sets up the appropriate mapping
using the physical address it has. (Sheet 08 has the various macros that are useful in getting the
index into page tables from the virtual address.)

After the kernel page table kpgdir is setup this way (line 1859), the kernel switches to this
page table by storing its address in the CR3 register in switchkvm (line 1866). From this
point onwards, the kernel can freely address and use its entire address space from KERNBASE
to KERNBASE+PHYSTOP.

Let’s return back to main in line 1220. The kernel now proceeds to do various initializations.
It also gathers many more free pages into its free page list using kinit2, given that it can
now address and access a larger piece of memory. At this point, the entire physical memory at
the disposal of the kernel [0, PHYSTOP] is mapped by kpgdir into the virtual address space
[KERNBASE, KERNBASE+PHYSTOP], so all memory can be addressed by virtual addresses
in the kernel address space and used for the operation of the system. This memory consists of
the kernel code/data that is currently executing on the CPU, and a whole lot of free pages in the
kernel’s free page list. Now, the kernel is all set to start user processes, starting with the init
process.



8.3 Creating user processes

e The function userinit (line 2502) creates the first user process. We will examine the memory
management in this function. The kernel page table of this process is created using set upkvm
as always. For the user part of the memory, the function inituvm (line 1903) allocates one
physical page of memory, copies the init executable into that memory, and sets up a page table
entry for the first page of the user virtual address space. When the init process runs, it executes
the init executable (sheet 83), whose main function forks a shell and starts listening to the user.
Thus, in the case of init, setting up the user part of the memory was straightforward, as the
executable fit into one page.

o All other user processes are created by the fork system call. In fork (line 2554), once a child
process is allocated, its memory image is setup as a complete copy of the parent’s memory
image by a call to copyuvm (line 2053). This function walks through the entire address space
of the parent in page-sized chunks, gets the physical address of every page of the parent using
a call to walkpgdir, allocates a new physical page for the child using kalloc, copies the
contents of the parent’s page into the child’s page, adds an entry to the child’s page table using
mappages, and returns the child’s page table. At this point, the entire memory of the parent
has been cloned for the child, and the child’s new page table points to its newly allocated
physical memory.

o [f the child wants to execute a different executable from the parent, it calls exec right after
fork. For example, the init process forks a child and execs the shell in the child. The exec
system call copies the binary of an executable from the disk to memory and sets up the user part
of the address space and its page tables. In fact, after the initial kernel is loaded into memory
from disk, all subsequent executables are read from disk into memory via the exec system call
alone.

e Exec (line 6310) first reads the ELF header of the executable from the disk and checks that
it is well formed. It then initializes a page table, and sets up the kernel mappings in the new
page table via a call to setupkvm (line 6334). Then, it proceeds to build the user part of the
memory image via calls to allocuvm (line 6346) and 1 oaduvm (line 6348) for each segment
of the binary executable. allocuvm (line 1953) allocates physical pages from the kernel’s
free pool via calls to kalloc, and sets up page table entries. 1oaduvm (line 1918) reads the
memory executable from disk into the allotted page using the readi function. After the end
of the loop of calling these two functions for each segment, the program executable has been
loaded into memory, and page table entries setup to point to it. However, exec hasn’t switched
to this new page table yet, so it is still executing in the old memory image.

e Next, exec goes on to build the rest of its new memory image. For example, it allocates a
user stack page, and an extra page as a guard after the stack. The guard page has no physical
memory frame allocated to it, so any access beyond the stack into the guard page will cause
a page fault. Then, the arguments to exec are pushed onto the user stack, so that the exec
binary can access them when it starts.



e [t is important to note that exec does not replace/reallocate the kernel stack. The exec system
call only replaces the user part of the memory. And if you think about it, there is no way the
process can replace the kernel stack, because the process is executing in kernel mode on the
kernel stack itself, and has important information like the trap frame stored on it. However, it
does make small changes to the trap frame on the kernel stack, as described below.

e Now, a process that makes the exec system call has moved into kernel mode to service the
software interrupt of the system call. Normally, when the process moves back to user mode
again (by popping the trap frame on the kernel stack), it is expected to return to the instruction
after the system call. However, in the case of exec, the process doesn’t have to return to
the instruction after exec when it gets the CPU next, but instead must start executing in the
new memory image containing the binary file it just loaded from disk. So, the code in exec
changes the return address in the trap frame to point to the entry address of the binary (line
6392). Finally, once all these operations succeed, exec switches page tables to start using the
new memory image, and frees up all the memory pointed at by the old page table. At this point,
the process that called exec can start executing on the new memory image. Note that exec
waits until the end to do this switch, because if anything went wrong in the system call, exec
returns to the old process image and prints out an error.



